
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A DCT-BASED IMAGE WATERMARKING ALGORITHM
ROBUST TO CROPPING AND COMPRESSION.

by

Ioannis Retsas

March 2002

 Co-advisors: Ron J. Pieper
 Roberto Cristi
 Second Reader: David C. Jenn

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March, 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: A DCT-Based Image Watermarking Algorithm
Robust To Cropping and Compression.�

6. AUTHOR(S) Retsas, Ioannis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement (mix case letters)

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Digital watermarking is a highly evolving field, which involves the embedding of a certain kind of information
under a digital object (image, video, audio) for the purpose of copyright protection. Both the image and the
watermark are most frequently translated into a transform domain where the embedding takes place. The selection
of both the transform domain and the particular algorithm that is used for the embedding of the watermark, depend
heavily on the application. One of the most widely used transform domains for watermarking of still digital images
is the Discrete Cosine Transform domain. The reason is that the Discrete Cosine Transform is a part of the JPEG
standard, which in turn is widely used for storage of digital images. In our research we propose a unique method
for DCT-based image watermarking. In an effort to achieve robustness to cropping and JPEG compression we
have developed an algorithm for rating the 8×8 blocks of the image DCT coefficients taking into account their
embedding capacity and their spatial location within the image. Our experiments show that the proposed scheme
offers adequate transparency, and works exceptionally well against cropping while at the same time maintains
sufficient robustness to JPEG compression.

15. NUMBER OF
PAGES

137

14. SUBJECT TERMS Digital Image Watermarking, JPEG Compression, Discrete Cosine
Transform

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

A DCT-BASED WATERMARKING ALGORITHM ROBUST TO CROPPING
AND COMPRESSION

Ioannis Retsas

Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1991

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

Author: Ioannis Retsas

Approved by: Ron Pieper
Co-advisor

Roberto Cristi
Co-advisor

David C. Jenn
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical Engineering

Dan C. Boger
Chairman, Information Warfare Academic Group

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Digital watermarking is a highly evolving field, which involves the embedding of

a certain kind of information under a digital object (image, video, audio) for the purpose

of copyright protection. Both the image and the watermark are most frequently translated

into a transform domain where the embedding takes place. The selection of both the

transform domain and the particular algorithm that is used for the embedding of the

watermark, depend heavily on the application. One of the most widely used transform

domains for watermarking of still digital images is the Discrete Cosine Transform

domain. The reason is that the Discrete Cosine Transform is a part of the JPEG standard,

which in turn is widely used for storage of digital images. In our research we propose a

unique method for DCT-based image watermarking. In an effort to achieve robustness to

cropping and JPEG compression we have developed an algorithm for rating the 8×8

blocks of the image DCT coefficients taking into account their embedding capacity and

their spatial location within the image. Our experiments show that the proposed scheme

offers adequate transparency, and works exceptionally well against cropping while at the

same time maintains sufficient robustness to JPEG compression.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PURPOSE .. 1
B. RESEARCH QUESTIONS .. 2
C. THESIS OUTLINE... 3
D. EXPECTED BENEFITS OF THE THESIS... 4

II. BACKGROUND ON DIGITAL WATERMARKING.. 5
A. HISTORIC REVIEW ... 5
B. GENERAL CONTEXT OF INFORMATION HIDING............................. 8

1. Information Hiding ... 9
2. Steganography ... 10
3. Covert Channels .. 10

C. WATERMARKING.. 10
1. Watermarking in the Digital World .. 10
2. Requirements... 12
3. Terminology... 13

a. Public and Private Watermarking ... 13
b. Robust and Fragile Watermarks.. 14
c. Fingerprinting .. 15

D. IMAGE WATERMARKING TECHNIQUES... 16
1. Space Domain Watermarking.. 16
2. Transform Domain Watermarking ... 17

III. DCT DOMAIN TECHNIQUES... 21
A. THE DISCRETE COSINE TRANSFORM.. 21

1. Linear Transforms .. 21
2. The Discrete Cosine Transform... 23

a. One-dimensional DCT ... 23
b. Two-dimensional DCT ... 24

B. THE JOINT PHOTOGRAPHIC EXPERTS GROUP (JPEG)
STANDARD... 25
1. The Transform... 26
2. Quantization .. 27
3. Coding .. 31

a. DC Encoding .. 31
b. AC Encoding... 32

IV. A NON-UNIFORM WATERMARKING ALGORITHM 35
A. ANALYSIS OF THE NEW CONCEPTS ... 35

1. Center of Interest Proximity Factor .. 35
2. Complexity Factor... 37

B. ENCODER... 38

 vii
1. Priority Coefficient.. 39

2. Embedding Algorithm .. 39
C. DECODER AND DECISION MAKING .. 42

V. IMPLEMENTATION ISSUES.. 45
A. KEYING... 45
B. QUANTIZATION ... 46
C. NORMALIZATION ... 47
F. ERROR CORRECTION CODING .. 51

VI. RESULTS... 55
A. TESTED IMAGES AND WATERMARKS ... 55

1. Images... 55
a. Regular (Non-synthetic) Images.. 55
b. Artificial (Synthetic) Images .. 55

2. Watermarks ... 57
a. Watermark Selection .. 58

B. TESTING THE NON-UNIFORM ALGORITHM 59
1. Transparency... 59
2. Watermark Recovery from Marked Image.................................... 61
3. Performance after Quantization .. 62
4. Robustness to Cropping.. 67

C. SELECTION OF THE WEIGHTING FACTOR...................................... 69

VII. CONCLUSION.. 71
A. SUMMARY.. 71
B. SIGNIFICANT REMARKS... 71
C. FUTURE WORK .. 72
D. EPILOGUE.. 73

APPENDIX A. RESULTS OF THE ECC IMPLEMENTATION.......................... 75

APPENDIX B. SOFTWARE.. 79

LIST OF REFERENCES ... 113

INITIAL DISTRIBUTION LIST .. 117

 viii

LIST OF FIGURES

Figure 1. Distribution of the CIPF over the 8x8 blocks of a 256x256 image with
k=15.. xvi

Figure 2. The 5 EURO banknote and its watermark (copied from the European
Central Bank site for the new currency at http://www.euro.ecb.int/) 7

Figure 3. Block diagram of the JPEG compression.. 26
Figure 4. fishingboat original (left) and quantized with quality factor 5% (right). 30
Figure 5. The zigzag path on an 8×8 block. ... 32
Figure 6. Peripheral (left) versus pie type (right) cropping of Lena............................... 36
Figure 7. The distribution of the CIPF over the 8x8 blocks of a 256×256 image with

k=15. The x and y axes are the coordinates of the image blocks (32×32
blocks in an 256×256 image). ... 37

Figure 8. Two binary 8×8 blocks with the same number of ones and zeros but
different perceptual characteristics.. 38

Figure 9. The basic encoder.. 41
Figure 10. The algorithm applied for a watermark with L coefficients and embedding

size 4.. 42
Figure 11. The decoder. .. 43
Figure 12. The bitPlanes function concept... 46
Figure 13. Lena marked (left) and marked and normalized (right). The black and

white dots that can be seen in the left image are considerably fewer in the
normalized image. In this case stripes was used and the watermark
coefficients were randomly distributed throughout the image........................ 47

Figure 14. The normalization function for n=3.5. .. 48
Figure 15. The original (left) and the normalized (right) pentagon and their

corresponding histograms. .. 49
Figure 16. The original (left) and the normalized (right) arctic hare and their

corresponding histograms. .. 50
Figure 17. The concept of expanding the watermark after BCH coding, where the

pixels p, of the watermark are numbered from 1 to L, and o are the
overhead bits. .. 53

Figure 18. The six regular images that were used in the research.................................... 56
Figure 19. The histograms of the regular images. .. 57
Figure 20. The four artificial images: imageB (top left), imageSB (top right), imageR

(bottom left), and imageU (bottom right).. 58
Figure 21. The three used watermarks: stripes (left), NPSlogo (middle) where

everything except the letters' background is random, and a randWm (right)
with all pixels uniformly distributed in the range [0, 255].............................. 59

Figure 22. Original and marked (NPSlogo) Lena (top) and peppers (bottom), with
α=0.1, xstart=4, es=2. All images are of type uint8.. 60

 ix

Figure 23. Original and marked (NPSlogo) arctic hare (top) and New York (bottom)
with α=0.1, xstart =4, es=2. All images are of type uint8............................... 61

Figure 24. Recovered watermark from the marked arctic hare of figure 23. 62
Figure 25. ρ for the regular images with stripes and α=0.1, es=2. 63
Figure 26. ρ for the regular images with NPSlogo and α=0.1, es=2................................. 64
Figure 27. ρ for the artificial images with stripes and α=0.1, es=2. 64
Figure 28. ρ for the artificial images with NPSlogo and α=0.1, es=2. 65
Figure 29. ρ for Lena with various embedding sizes and NPSlogo, α=0.1. 65
Figure 30. ρ for fishing boat with various embedding sizes and NPSlogo, α=0.1. 66
Figure 31. ρ for New York with various embedding sizes and NPSlogo, α=0.1............... 66
Figure 32. Cropped fishing boat with remaining pixels [111:402, 111:402] from a

512×512 image.. 68
Figure 33. Performance measured on the marked New York image (uint8) for various

values of α (watermark: NPSlogo, xstart=4, embedding size=2). 69
Figure 34. Performance measured on the marked Lena image in uint8 for various

values of α (watermark: NPSlogo, xstart=4, embedding size=2). 70
Figure 35. Lena marked with NPSlogo and xstart=4, es=2. The distortion at α=0.3 is

clearly visible. ... 70
Figure 36. BER of regular images with watermark stripes... 75
Figure 37. BER of regular images with watermark NPSlogo. .. 76
Figure 38. BERmod for regular images with watermark stripes. 76
Figure 39. BERmod for regular images with NPSlogo. .. 77

 x

LIST OF TABLES

Table 1. The JPEG proposed luminance Q-table. ... 28
Table 2. The JPEG proposed chrominance Q-table. ... 29
Table 3. The luminance Q-table proposed by the IAHS Incorporation. 30
Table 4. The DIFF categories. .. 32
Table 5. The Huffman code for DIFF values.. 33
Table 6. The AC categories... 34
Table 7. Performance of the non-uniform algorithm against cropping (NPSlogo,

α=0.1, xstart=4, es=2). .. 67
Table 8. Performance of the non-uniform algorithm against cropping (NPSlogo,

α=0.1, xstart=4, es=2). .. 68

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

The author would like to acknowledge

- Dr. Ron. J. Pieper and Dr. Roberto Cristi, for their expert knowledge and

guidance

- Evie, for her love and support and also for her priceless gift, our son

Athanasios.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

EXECUTIVE SUMMARY

Watermarking is a method of providing protection of intellectual property in

digital multimedia, and is based on hiding a digital signature within the data. With this

signature one can identify the proprietor of a certain set of data and thus protect her/his

intellectual property. In order for the watermarking to be dependable it is imperative that

it has certain characteristics. The most important of these are: transparency of the

watermark (it should be imperceptible to the Human Visual System), and robustness

against common tampering with the image. This tampering may include JPEG

compression, or cropping. With our work we provide a technique that gives satisfactory

results in terms of transparency and robustness against JPEG compression and cropping.

The new feature in our work has to do with the method we use for the matching of the

image blocks and the watermark coefficients that are embedded in each block.

The embedding takes place in the DCT domain, which is also used by the JPEG

standard, and allows for the exploitation of the domain's particular characteristics and the

achievement of watermark transparency. Both the watermark and the image are DCT

transformed. We have developed a method for rating the 8x8 blocks of the DCT of the

image according to their Priority Coefficient (PC), which is a measure of their embedding

capacity and their resistance to cropping.

For each 8x8 block of the DCT coefficients of the image, we calculate the

Complexity Factor (CF), a novel metric for measuring the capacity of each block to

receive watermark coefficients. We know that in the areas of the image where we have

more “action” we can embed more information imperceptibly. In the literature there have

been attempts to use the variance of each 8x8 block of the image as a measure of

imperceptibility after watermark embedding. We show that the Complexity Factor as a

capacity metric is a more accurate approach since the variance of the image blocks alone,

does not necessarily manifest the actual visual properties of the particular spatial section

of the image.

Additionally, for each block of the cover image we calculate the Center of Interest

Proximity Factor (CIPF), which is a measure of significance of each 8x8 block with

 xv

respect to cropping resistance. We first determine the Euclidean distance r, between the

center of the block, and the Center of Interest (CI). In our experiments we assumed that

the CI is the center of the image. The Euclidean distance r, is then normalized over the

diagonal (i.e. the maximum possible distance within the image) to produce a normalized

value rnorm. This normalized distance is then processed by a transformer with

characteristic function f,

2
1))

3
2((tan1)(1 +−⋅⋅−= − rnormkrnormf

π
,

to result in the CIPF (CIPF=f(rnorm)). The distribution of the CIPF over the 8x8 blocks

of a 256x256 image can be depicted in figure 1.

Figure 1. Distribution of the CIPF over the 8x8 blocks of a 256x256 image with
k=15.

The CF of each 8x8 block is scaled by the CIPF to produce a Priority Coefficient

(PC), which is attached to the block and contains all the information that is required for

its rating. The blocks are now sorted by descending order of their PC.

The DCT coefficients of the watermark are sorted according to magnitude and

divided into m groups of descending magnitude with equal number of elements. We then

form embedding sets of coefficients. Each set contains m coefficients, one from each

group. By this scheme, we

 xvi

• embed the largest coefficients in the blocks with the larger capacity thus, ensuring

transparency,

• avoid block saturation, which would very likely occur if only large coefficients were

embedded in one block, and,

• protect the largest coefficients (which are the most important ones) by embedding

them to the blocks which are more unlikely to be cropped.

The sets are then embedded into m frequency coefficients of the 8x8 DCT image

blocks. Embedding in the lowest frequencies allows for higher robustness of the

watermark against JPEG compression, since these coefficients are the least affected by

the quantization process. However, the lower frequencies are the most perceptible ones,

but we manage to compensate for the latter, by appropriately adjusting a weighting factor

α.

The decoder works in reverse order and requires both the original image and the

watermark. The level of detection is based on the correlation coefficient ρ, which is given

by

∑ ∑∑⋅∑

∑∑
=

i i j
jiWr

j
jiW

i j
jiWrjiW

2)],([2)],([

),(),(
ρ ,

 and is a measure of similarity between the watermark W and the extracted pattern Wr.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

With the recent developments in digital communications and digital signal

processing, and the expansion of the Internet, the proliferation of digital material (audio,

images, video) has become extremely easy. The possible implications of this situation

include the unauthorized distribution of such material with the purpose of making illegal

profit or otherwise damaging the legal owner. Inevitably the business world and the

authorities have expressed great concern over this issue, and as a result, the scientific

community has become extremely active trying to provide techniques for copyright

protection of digital material.

Towards this direction several types of secure communication methods are being

explored addressing different aspects of the problem. These methods are either evolution

of previously discovered techniques (types of encryption date back to the Roman era) or

innovations that are dictated by the recent technologic developments.

Watermarking is a method of providing protection of intellectual property in

digital multimedia, and is based in principle on hiding a digital signature (not to be

confused with the term signature as used in cryptography) within the data. With this

signature one can identify the proprietor of a certain set of data and thus protect her/his

intellectual property.

A. PURPOSE

The purpose of this research is to investigate the application of the Discrete

Cosine Transform in Digital Watermarking.

In this thesis we deal with watermarks for digital images. In order for the

watermarking to be dependable it is imperative that it has certain characteristics. The

most important of these are: imperceptibility of the watermark to human eye, and

robustness against innocent or malicious tampering with the image. Among the most

common ways of tampering with an image are: cropping, JPEG compression, resizing,

filtering etc. It is these characteristics that dictate the continuous research on the field for

the development of a robust scheme.

1

In general a watermarking technique involves the transformation of the image to a

transform domain (FFT, DCT, DWT), if other than the space domain, and the embedding

of the watermark coefficients on some or all of the image coefficients. The selection of

the embedding domain has to do with the specific characteristics we want to exploit. The

DCT domain in particular, is very popular in the watermarking community. The DCT is a

part of the JPEG standard, and JPEG is in turn a very widely used image compression

technique. By embedding the watermark in the DCT domain we can therefore create

embedding schemes that are particularly robust against JPEG compression.

Through the course of this research a considerable amount of relevant work was

examined and evaluated in terms of their results. Part of this work served as the basis for

the development of our testing platforms. Starting from basic principles we have

developed a complete watermarking scheme. Our scheme has been tested against

different attacks and proved to be adequately transparent and robust. Additionally it has

been tested for different embedding parameters and results have been produced and

evaluated. Slight variations of the basic algorithm have also been developed and

investigated in an effort to reach better results.

In this thesis we present a unique method for rating the 8×8 blocks of the image

DCT coefficients according to their embedding capacity. Furthermore, an algorithm has

been developed for determining the watermark coefficients that are embedded in each

block. Our goal was to achieve maximum transparency and robustness against cropping

and compression at the same time.

B. RESEARCH QUESTIONS

There are a number of research questions that we strive to answer in this thesis.

Firstly, we attempt to analyze the Discrete Cosine Transform and its potentials as

a watermarking method. We investigate the watermark characteristics that affect the

performance of a watermarking scheme and also the arguments for supporting perceptual

or random watermarks.

Since in almost every watermarking transparency is paramount, we discuss the

parameters that may be used for determining the capacity of each image block following

ideas that have been suggested in the literature.
2

Identifying the factors that affect the quality of a watermarking scheme when

under cropping or JPEG compression attacks was one of the basic elements of our

research. The result was the development of the new algorithm that is proposed here.

Consequently, the evaluation of the robustness of the proposed algorithm under attack

became also one of the primary objectives.

C. THESIS OUTLINE

This thesis is organized as follows:

Chapter II provides the background required for the novice in the field. After a

brief historic overview, Digital Watermarking is identified among other relevant

technologies and the lines between these technologies are drawn. The needs that dictated

the development of this technology are explained and also the requirements of a Digital

Watermark that stem from these needs are reviewed. Definitions for terms and concepts

pertaining specifically to Watermarking are given and they serve as a tool for better

understanding the different approaches. Finally the different watermarking techniques

that have been developed are reviewed with emphasis given in comprehending the

principal differences between them. Brief examples of recent research work are given in

order to support our arguments.

Chapter III involves a more technical insight of the technology, and the

mathematical tools necessary for comprehension of our research are presented. In that

context the Discrete Cosine Transform (DCT) is analyzed and its connection to the JPEG

standard is discussed. The JPEG standard is reviewed and all is elements namely the

DCT, quantization, and encoding are explained.

In Chapter IV the train of thought that led to the development of the new

algorithm is shown. As our reasoning progresses, a step-by-step implementation of a new

algorithm is revealed, and the way we attacked the problem is analyzed. This chapter is

divided into three sections. In the first section new terms and concepts are introduced and

explained. In the next section, we propose a new algorithm that deals with the

transparency problem and offers sufficient robustness against cropping and JPEG

compression. Finally we offer a description of the Watermark recovery process that was

used in the proposed scheme.

3

Throughout our research several schemes were tried and evaluated. These

schemes are presented in Chapter V regardless of their effectiveness because they can be

the basis of future work. Finally the algorithm that was used in certain key elements of

our scheme is analyzed.

Chapter VI presents experimental results validating the arguments in Chapter IV

and V. We start from the images and the watermarks that were used, and the reasons why

we chose these in particular. The results of our experiments are collectively presented

here. We made an effort to present the results in such a way that they would better

support the conclusions of the next chapter.

Finally in Chapter VII our work is briefly summarized and conclusions following

the experimental results are made. Also we make suggestions for possible future work

based on this material.

D. EXPECTED BENEFITS OF THE THESIS

Digital watermarking is a research area still being under exploration. None of the

methods proposed so far has yet dominated, while the market is still in need of a

dependable scheme that will provide watermarking robustness. It is yet not known if the

development of a composite watermarking algorithm that will be used for different

applications is feasible. So far it appears that even for objects of the same data type the

watermarking algorithms that have been developed, seem to address very specific

problems (for example in digital image watermarking the DCT based watermarks were

primarily used to address the problem of JPEG compression). Towards this direction

researchers all over strive to make all the necessary steps that will lead to a complete,

dependable watermarking algorithm.

With our research we try to investigate how the different watermarking

parameters affect the quality of our product. The issue of embedding the watermarks in

selected image blocks, that allow imperceptible embedding is also addressed. Finally, we

propose a new algorithm that may serve as the basis for further research in the field. We

hope that this research contributes towards the direction of developing a composite image

that addresses collectively all the possible attacks.

4

II. BACKGROUND ON DIGITAL WATERMARKING

A. HISTORIC REVIEW

The problem of achieving hidden communication between two parties has been

investigated for thousands of years. One could safely assume that from the moment

mankind formed organized military groups that were engaged in wars of any extent, the

need for secure communications between members of the same group was probably

experienced. There have been mainly two approaches towards a solution; cryptography

and steganography. Both words are derived from Greek (cryptography: κρυπτός

(=hidden) + γράφειν (=writing), steganography: στεγανός (=protected) + γράφειν). Their

distinction is based on the following: cryptography is a way of communication, where the

information to be secured is scrambled by the use of certain code, in a way that a third

party, without the code, would be unable to retrieve the information; steganography on

the other hand, is trying to achieve secure communication by hiding the existence of the

message.

There is written evidence that secure communication techniques were exercised

from as early as the years of Homer. The most frequently cited evidence though, is in the

descriptions of the Greek historian Herodotus of Halicarnassus (440 BC). He states that a

slave was sent by his master, Histiaeus, to Aristagoras the ruler of the city of Miletus.

The slave was carrying a message for Aristagoras tattooed on his scalp. After tattooing

the message he let his hair grow back again. Only when he had safely traveled to Miletus

did the slave shave his head to reveal the message to Aristagoras encouraging him to

revolt against the Persian King.

Aeneas the Tactician of Greece in one of his earliest books on military science,

On the Defense of Fortified places, described as early as the fourth century, a system of

cryptography. The Caesar Cipher attributed to the Roman emperor Julius Caesar (100BC

– 44BC) was used for the communication between him and his generals. It was based on

shifting each letter of the communicated text by a certain number of positions in the

alphabet. The amount of shifting was known only to him and to his generals. For

everybody else the message had absolutely no meaning. Petitcolas et al. in his work

5

Information Hiding – A Survey ([1]), does a considerable research on the use of secure

communication techniques throughout history. Among others he mentions that the head

shaving technique that was used by Histiaeus back in the classical Greece was also used

by German spies in the beginning of the twentieth century.

As Ryan describes in [2] the Russian failure at Tannenberg in August of 1914 saw

the complete destruction of two Russian armies by a single German army half their

combined size. This decisive victory directly resulted from the fact that the Russian

communications were compromised. The Russians had failed to distribute the military

ciphers and their keys making it impossible for the two neighboring armies to securely

communicate. All the Russian communications as the battle progressed were in the clear

and therefore the Germans knew exactly what the Russian plans were, sometimes even

before the Russian had received the orders by their command. The result, as Ryan clearly

puts it, was that in the end, 30,000 Russians were killed or missing, 100,000 were

captured, one of the two Russian armies was devastated and one simply ceased to exist,

all at the guns of the smaller but more mobile German army with its infinitely more

secure communications.

In the same work the author reveals that although the Japanese policy stressed the

importance of communications security, their practices and procedures implementing that

security were slipshod. Admiral Nimitz, thanks to the American cryptanalysis, was in

hold of all the information that the captains of the Japanese ships knew about the battle of

Midway. The advantage of surprise that Yamamoto depended upon was lost due to

American cryptanalysts, and this cost the Japanese the battle, which turned the tide of the

war.

 Addressing specifically the watermarking history, we know that paper

watermarks appeared in the art of hand papermaking nearly 700 years ago. According to

Hartung and Kutter ([3]), the oldest watermarked paper found in archives dates back to

1292 and has its origin in Fabriano, Italy, which is considered the birthplace of

watermarks. Thereafter, paper watermarking spread quickly all over Europe and beyond

its use as a security feature, served also as an indication for paper format and quality.

Paper watermarks were also used to date and authenticate paper.

6

Paper watermarking is still used, and is one of the major security measures in

today's banknotes. The EURO (€) that was introduced only a few months ago among the

European Union Countries was designed to have a watermark as one of its security

features. In figure 2 we can see the watermark in the 5€ banknote.

Cox et al. in their recent book on Digital Watermarking ([4]) make a reference to

the book "The Codebreakers", by Kahn, where there are stories of information hiding

which are more relevant to watermarking. It is described in particular, that in the book

"Hypnerotomachia Poliphili", which was anonymously published in 1499, there was a

secret message hidden. Putting together the first letters of each chapter you would form

the phrase "Poliam Frater Franciscus Columna Peramavit", which means "Father

Francesco Columna loves Polia".

Figure 2. The 5 EURO banknote and its watermark (copied from the European

Central Bank site for the new currency at http://www.euro.ecb.int/)

In the same book [4], the authors mention a story that takes place in the mid

twentieth century and involves the use of a watermark very similarly to the way

watermarks are used now, in the digital world. Specifically, in 1954, Emil Hembrook, of

the Muzak Corporation, inserted an identification code in music by intermittently

applying a notch filter centered at 1KHz. He used the Morse coding, and therefore by the

7

http://www.euro.ecb.int/

absence of energy that the filter caused, and by its duration, one could identify the hidden

information. It is interesting to note that this invention is described by the US Patent in

1961, as an invention that makes possible the identification of the origin of a music

presentation, therefore, preventing piracy.

There is clearly a connection between paper watermarks, steganography, and

digital watermarking. In fact, paper watermarks in banknotes probably inspired the first

use of the term watermarking in the context of digital data ([3]).

It is debatable who were the first to introduce the term digital watermarking ([4],

[3]). What appears to be more accurate is the Cox version, which states that the first to

use the term were Komatsu and Tominaga, in 1988. It took however a few more years

until 1995/1996 before watermarking received remarkable attention. Since then, digital

watermarking has evolved very quickly, something that can be verified by the amount of

papers published on the subject.

Nowadays many corporations and institutions are active in the field. As an

example we mention the International Standard's Organization (ISO) taking interest in the

technology in the context of designing advance MPEG standard. The DVD and audio CD

industries also strive to produce secure watermarks. The significance of the research

going on can be perceived by the example of the SDMI foundation and Verance

Corporation that threatened to bring a lawsuit against a scientific team that participated in

a "public challenge", broke their algorithm, and attempted to publish the results in a paper

titled "Reading Between the Lines: Lessons from the SDMI Challenge" by Craver et al.

B. GENERAL CONTEXT OF INFORMATION HIDING

In the literature there have been several attempts for categorizing the different

methods of secure communications. These attempts do not always agree and in some

cases may even be conflicting. The terms used are general by nature, and thus they are

frequently overlapping. We will try to describe the idea behind these terms and give an

overview of how they are related to each other, but we will avoid any attempt to form a

strictly defined Secure Communications’ tree.

Encryption was up to a few years ago the only available means for protection. It

involves the scrambling of the data with a key, which makes it difficult (depending on the
8

quality and the complexity of the encryption algorithm) for an eavesdropper to gain any

information on the content of the data that is being exchanged. A key (the same or a

different one depending on the encryption algorithm) should also be used by the

authorized recipient in order for the message to be decrypted. The message on the

communication channel is, in this case, meaningless for those not in hold of the Key. An

unauthorized third party, knowing that an encrypted message is being exchanged, should

try to break the encryption algorithm. Depending on the type of the message sent, one can

select the strength of the encryption algorithm. For example if the message is “attack the

enemy on January 1st, at 01:00” an algorithm that will not be broken by January 1st will

suffice. Beyond that point the attack has already commenced, and it is reasonable to

assume, that the enemy has already found out. So the type of the message determines the

cost one has to pay, in terms of time and resources, in creating an algorithm with the

appropriate strength.

With this scheme we achieve protection during the transmission of the message

but we have no protection whatsoever in a case where the contents of the message are

publicly available but their redistribution is not authorized. An audio CD for example

contains information that is readily available for public use but unauthorized copying of

its contents is illegal.

1. Information Hiding

A widespread term describing a broad area of secure communication methods is

Information Hiding. It is a general term that encompasses different kind of problems. All

of these problems have as a common denominator the effort to prohibit an unauthorized

third party from obtaining access to a message. Despite our feeling that Information

Hiding should be used interchangeably with Communications Security this is not

generally the case. In most of the literature Information Hiding is treated as a subcategory

of Communications Security, along with Cryptography.

Information Hiding may refer to either making the information imperceptible or

keeping the existence of the information secret [4]. Petitcolas et al. ([1]) describe

Information Hiding as traffic security, treating it separately from encryption. According

to the same authors this discipline also includes such technologies as: spread spectrum

9

radio communications (widely used in the military in an effort to keep secret the

exchange of radio transmissions), temporary mobile subscriber identifiers (provide to

some extend location privacy to users of digital telephones), and anonymous remailers

(which conceal the identity of the sender of an e-mail message).

2. Steganography

Steganography is the art of trying to keep concealed the very existence of the

communication channel. Some examples of steganographic attempts throughout history

have been shown in Section A above. In general, steganography falls under the

Information Hiding root. In the Information Hiding tree provided in [1], there are further

subdivisions of steganography (Linguistic, Technical) that we are not going to cover.

3. Covert Channels

Covert channels are described as channels that were not designed for the purpose

of exchanging of information. The term is primarily used in computer security and

describes the method that is used by programs that communicate information to

unauthorized parties.

The most common way to implement this idea, is by inserting a Trojan horse into

a service program. The user is normally unsuspecting of the situation and when using the

service program he automatically leaks information. To better appreciate this technique

we will provide a particular example of covert channels: the storage channels ([5]). In

multiuser systems, the operating system does not normally allow users to write to the

same file at the same time in order to prevent its possible corruption. Every file in use is

"locked", and thus any "write" request from other programs is rejected by the operating

system. A covert channel can signal a 1-bit information by whether or not a file is locked.

At this time the service program may be reading confidential data and the Trojan horse

signals the data one bit at a time by blocking or not an irrelevant predetermined file. The

only extra requirement for the implementation of this technique is that the service

program (with the Trojan horse) and the unauthorized third party have a common timing

source.

C. WATERMARKING

1. Watermarking in the Digital World

10

The developments in the networking technology and the worldwide web have

significantly increased the risk of piracy. The situation now has very much evolved from

the days were the only storage means was a tape, and any kind of reproduction resulted in

copies that were degraded versions of the original object. Nowadays the multimedia data

are available on the Internet in digital form, which allows for the reproduction of exact

copies of the original. Additionally, copying devices are quite efficient, and most

importantly, inexpensive, and therefore virtually anyone could afford its use. Considering

both these factors we have all the necessary requirements to managing illegal distribution

of digital multimedia and thus financially damage the legal owner of an object.

As already explained in the introduction, cryptography is not an adequate method

when it comes to the protection of material that is publicly available but its redistribution

is unauthorized. The watermarking technology potentially offers the solution to this

problem.

Steganography and watermarking have been developed based on the same

theoretical roots, that we want to keep a secret message hidden from an intruder.

However there are conceptual differences between the two. Firstly, the latter requires

extra robustness against attacks since our priority is to maintain the integrity of the secret

message / watermark. In steganography, on the other hand, the assumption is that there

will be no such attacks against the hidden message only because its very existence is

secret. Any kind of attack on the object carrying the message is of no importance because

it only serves as a cover of our real intentions. Here only the secrecy of the

communication path is paramount. In watermarking, there are cases where we select to

reveal the existence of a watermark on our object (the intruder knows that there is a secret

message but does not know how to remove it), challenging, in a way, potential attackers.

However, this may serve as a deterrence, since an intruder might not select to attack an

image knowingly marked. In other words in steganography an intruder strives to detect

the existence of a secret communication path and to retrieve the hidden information

regardless of the effect on the cover object, while in watermarking an intruder aims at

removing the watermark while at the same time maintaining the quality of the object.

11

We realize that the developments in the watermarking technology were dictated

by the need for copyright protection of digital material. And this need resulted from the

developments of other technological fields i.e. networking, storage and reproduction of

digital data etc.

2. Requirements

There are many different everyday situations where the watermarking technology

would be applicable. The first that comes to mind is proof of ownership. When you

publish an image in the web and you want to retain the copyrights, you need to have a

means of proving your ownership in a dispute. Registering the image with the Office of

Copyrights and Patents would be the most appropriate action. However this is not always

what people do, either to avoid the cost involved or simply to avoid extra paperwork. In

general you want to put a digital signature in the object you own, in a way that only you

can extract it. Any copy of the object would carry that same signature. If an adversary

wanted to steal your property he would have to extract your watermark from the object,

and maybe insert his own instead. This situation dictates one of the properties that this

specific type of watermark should have: robustness against any kind of tampering with

the image. The appropriate watermark should not be easily extracted from the image and

if it did, the image should be so much degraded (in terms of quality) that would not serve

any purpose to the unauthorized user.

Next, we describe a situation where the owner of an object makes a legal

agreement for supplying his object to clients. We need a watermark to identify which of

the clients broke this agreement and supplied the object to third parties. The watermark in

this case serves as a serial number, it should be robust against attacks, and, at the same

time, unique for each customer.

A different type of watermark should be used for verifying that a certain copy of

an object is indeed a credible copy and that it has not been tampered with, in a manner

that "critically" alters its contents. There are tamper-proofing techniques that accurately

detect that an object has been tampered with [6]. But these techniques produce "yes-or-no

results to the question of tampering" ([7]) and therefore they are not useful in all possible

cases. The big question here is what kinds of changes need to be detected and what

12

changes are of no interest to us. A considerable amount of research has been conducted in

the area, in an effort to produce a watermark, which would be fragile to certain types of

modifications and resistant to others. This would allow the detection of particular types of

tampering, for example the use of Adobe Photoshop to add a non-existing object to the

image, while others such as JPEG compression should go undetected.

Other qualities generally required from a watermark stem from the type of the

application. For example in digital sound or images it would be preferable for the

watermark to be imperceptible to the human senses (ear or eye) so that the quality of the

marked image is not compromised.

3. Terminology

a. Public and Private Watermarking

In the literature there have been several approaches to this issue. Petitcolas

et al. in [1] define as private watermarking systems those that require at least the original

image for decoding. The authors of the paper further define the Type I and Type II private

watermarking systems. As Type I they characterize those systems that base their

detection process on the possibly marked image and an exact copy of the original one.

The Type II systems on the other hand, require also the watermark for the decoder. One

more category, the Semiprivate watermarks, is also mentioned. Public marking requires

neither the original image nor the watermark. Consequently it is a more challenging

scheme but the decoder results are expected to be poorer because of the small amount of

information that is available throughout the process.

Cox et al. in [4] seem to put the two terms in a more general, though also

more complicated, perspective. According to them, in both cases the world can be

divided into a group of trusted individuals, and the public, who are assumed to be

potential adversaries. In private watermarking the public has no access to the

watermarking data whatsoever. In public watermarking however, the public is only

allowed to detect the watermarks. The way the terms are used here, refer to the security

requirements of the application. Similarly the same terms can be used to describe

watermarking algorithms and as such they describe algorithms that fulfill the

13

corresponding security requirements. The authors admit that in that sense the usage of the

terms public and private is ambiguous.

We will follow the definition given by Petitcolas ([1]), which is accepted

in most publications. In many publications the term public is used interchangeably with

blind.

Blind watermarking appears to have more applications and to be much

easier to use. You need to pass only the tested image through the decoder. Private

watermarking algorithms, since they need at least the original image, they have to be

supported by higher security requirements. On the other hand, the development of a

private watermarking algorithm should also be generally simpler and the results are

expected to be significantly better.

The blind watermarking techniques developed so far do not seem to be

adequately effective, but both subjects are currently under research and we should expect

better results in the near future.

b. Robust and Fragile Watermarks

The term robust watermark describes those watermarks remain detectable

within an object in spite of significant levels of tampering of all kinds. The detection of

the watermark comes down to the determination of the probability that the watermark is

present in the object. In other words this is a measure of how confident we are that the

tested object is indeed marked. Even when the detector gives a yes-no answer, in the

general case, this results from the comparison of the calculated probability with a

predetermined threshold. However, when an object is tampered with, it is automatically

modified from the original, and in that sense its quality is degraded. Whether this

degradation can be detected or not by the human sensors, is the question that needs to be

asked. Therefore, we can define some limits for the maximum required robustness of the

embedded watermark. The limits are set to the point where the object is subjected to so

much tampering for the removal of the mark that the results not only can be detected by

the human sensors, but also its quality becomes very low to offer any benefit to an

attacker. In reality the situation is much more complicated because for each different kind

of tampering the limits described above are different. To exhaust all possible attacks

14

(different kinds of tampering) and thus set a final limit that would cover all the cases if

not impossible, it is not an easy task.

A fragile watermark has the purpose to confirm that the object has not

been tampered with. In cryptography the same problem has been studied extensively and

the most well known solution is the creation of a digital signature. In that sense the

digital object is processed through a Hash Function [5]. A Hash Function "produces a

reduced form of the body of data such that most changes to the data will also change the

reduced form". In particular a cryptographic hash function, uses a cryptographic function

as part of the hash function. The sender in this case would evaluate the hash function of

the data and send both the data and the hash value through the communication channel. A

legitimate recipient should be in hold of the cryptographic algorithm. He should decrypt

both the data and the hash value and then pass the data through the same hash function.

By comparing the computed hash value with the value that was transmitted to him by the

sender, he can verify that the data were received as sent. An intruder may be able to

modify the data, or the hash, on their way over the channel. However, since he has only

access to encrypted information, it is unlikely that he could modify both in such a way

that they would match again.

As explained in one of the examples given in sub-section C.2 a watermark

that potentially exhibits selective robustness, generally called fragile watermark, is

required for tamper-proofing purposes. Again, the development of this kind of watermark

faces serious problems. Except from the pure implementation issues that include the

several different cases that need to be examined, there is also need for some limits to be

set. These will define the cases where the watermark should be robust and the cases

where it should be fragile. The lines are also in this case unclear and therefore difficult to

be firmly established.

c. Fingerprinting

The term describes the watermarks that are used as a serial number on the

copies of an object. They are like a fingerprint of the copy. The situations that dictate the

need for their development are also described in sub-section C.2. The primary qualities of

the fingerprints are robustness against attacks and uniqueness for each different copy of

15

the same object. According to [4], fingerprinting refers sometimes to the practice of

extracting inherent feature vectors that uniquely identify the content.

D. IMAGE WATERMARKING TECHNIQUES

The driving force for the booming of the watermarking research was, as already

explained, partially the Internet users, who are in need to secure their multimedia

products that are available on the internet, and also the industry of musical CDs and

DVDs that are even more desperate to protect their intellectual property and secure their

profits. There is demand for all kinds of watermarks. In our research we will deal with

digital images. The amount of research in this field (image watermarking) is larger

compared to other fields and this is partially due to the large amount of digital images

that are available in the Internet. There are two main embedding techniques different in

principle: one that involves embedding in the space domain, and the other that uses

instead a transform domain. In [3], [8], and [9] the authors provide an overview of some

of the significant work in digital watermarking involving different embedding

approaches.

1. Space Domain Watermarking

The space domain techniques are generally considered more susceptible to the

various kinds of attacks. However these techniques were implemented first, and there is

still research going on in the area, though not as intense as in the transform domains.

Space domain techniques can be chosen for low cost schemes requiring low complexity

and small computational overhead.

The early space domain watermarking techniques were not particularly efficient.

One of the most primitive ideas was embedding in the Least Significant Bit of the pixel

values. This technique is generally easy to detect and thus not much sophistication is

required to remove the watermark. The space domain approach has evolved thereafter

and methods have been proposed that are considerably more effective.

In [10] the authors propose the "Patchwork" method and the "Texture Block

Coding". In the former randomly selected pairs of pixels (αι, βι) are used to hide 1 bit of

watermark. The value of αι is increased by 1 and the value of βι is decreased by 1. For

this method to work, some statistical properties should be satisfied. The latter involves

16

copying one image texture block to another area in the image with similar texture. For the

recovery of the watermark the autocorrelation function is computed. This method has

proved to be sufficiently robust to several kinds of distortion.

In [11] another technique is proposed. The authors use a binary watermark with

equal numbers of ones and zeros, which has the same size as the original image. In half

of the image pixels a binary one is embedded by changing the pixel number by an integer

value k, which is the same for all the pixels. Hypothesis testing is used for the watermark

detection and the method seems to behave well in down-sampling followed by up-

sampling, and JPEG compression with compression ratios up to 1:4.

A somewhat improved version of this idea is proposed in [12]. The image is

divided into non-overlapping 8×8 blocks. The blocks where the mark will be embedded

are selected pseudorandomly. To each selected block a pseudorandom binary 8×8 block

with equal number of ones and zeros is assigned. To embed a bit 1 the pattern is added to

the block and to embed a zero the same pattern is subtracted from the block. Then the

difference between the mean value of the image pixels that correspond to a 0 in the

pattern is subtracted from the mean value of the pixels that correspond to a 1. The same

calculations are repeated for the JPEG compressed counterpart of the image. If a 1 is

embedded the differences from both the original and the compressed version need to

exceed a threshold T. If a 0 is embedded both differences have to be below 0. If this

requirement is not met the pattern is iteratively added or subtracted until the condition is

met. This method is particularly designed for JPEG compression and according to the

results presented, it seems to provide sufficient robustness.

Kutter et al. ([13]) attempt to embed a watermark in the space domain using only

the blue image component in an RGB colorspace, in order to maximize the watermarking

strength while keeping the visual artifacts minimal.

2. Transform Domain Watermarking

There have been several attempts by the research community to investigate the

watermarking performance in different transform domains. The basic benefit from a

transform domain technique is that by choosing a framework that matches the current

compression standards, the watermarking algorithm can be designed to avoid embedding

17

in the coefficients that are normally discarded or severely quantized during compression.

In this way we can ensure robustness to this particular kind of compression ([14], [15]).

In [16], to start from a rather unusual approach, the authors use the Fresnel

transform to provide the embedding domain. The advantage of this approach is that

several embedding plains exist in the Fresnel domain according to the various distance

parameters thus providing many embedding channels. This work seems to give good

results against certain geometric transformations and filtering but there is no indication

whatsoever of its performance against any type of compression. In addition, no follow-up

work has been observed in the literature.

In reference [17] the authors propose embedding in the DFT domain. In particular

they select to embed the watermark using the phase of the DFT since it appears to be

more important than the amplitude of the DFT values for intelligibility of an image. In

other references ([18], [19], [20], [21]) the amplitude of the DFT is also used.

In reference [22] the authors propose a spread spectrum embedding technique,

which uses the DCT domain as the embedding domain. Its innovation was how

communication concepts such as spread spectrum can be applied to watermarking, and

that the watermark can be embedded in the perceptually significant portion of the image.

In spread spectrum communications, one transmits a narrowband signal over a much

larger bandwidth such that the signal energy present in any frequency is undetectable.

Similarly here, the watermark is spread over many frequency bins so that the energy in

every one bin is very small and therefore unnoticeable. This idea can be applied to

different transform domains. When the DCT is used, the transform is performed on the

whole image and the watermark is embedded in the lowest frequency coefficients

(excluding the DC component). As influential as this work may be, it has not yet

produced the breakthrough method that the watermarking community is expecting.

A different idea is presented by Podilchuk et al. in [23], [24]. There, the concept

of the Just Noticeable Difference (JND) is used. The JND thresholds have been used

successfully in audio compression and in [24] the authors were the first to introduce the

same concept to digital watermarking. In essence, the JND threshold determines the

maximum level of distortion that will be transparent to the human visual system (HVS).

18

According to the authors there are three different properties of the HVS that determine

these thresholds and need to be taken into account when building a model: (a) Frequency

sensitivity, which describes the human eye’s sensitivity to frequency gratings at various

frequencies, and provides a basic visual model that depends only on viewing conditions

and is independent of the content of the image; (b) Luminance sensitivity, which is a non-

linear function for the HVS, and measures the effect of the detectability threshold of

noise on a constant background; and (c) Contrast masking, which refers to the

detectability of one signal in the presence of another signal. An attempt to incorporate the

JND models to the work that is presented in this paper will be left for future work. This

concept is applied to both the DCT and the Wavelet domain.

The authors, Piva et al, have also worked on a DCT-based method that exploits

the masking characteristics of the HVS [25]. The watermark used is a pseudorandom

sequence of N real numbers with normal distribution and the method appears to be

effective with respect to JPEG compression median filtering and some geometric

distortions.

The Wavelet domain appears also to be an appealing embedding domain. One

reason being that it is included in the JPEG 2000 standards. Therefore wavelet-besed

watermarking methods can be applied to provide protection against JPEG 2000

compression. Also the wavelet domain can be used as a computationally efficient version

of the frequency models for the HVS ([26]).

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

III. DCT DOMAIN TECHNIQUES

A. THE DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform is a key element for JPEG compression and as

such the related theory is important for our research. The concept is well explained in

reference [27]. The DCT is a linear transform and therefore we will briefly introduce the

linear transforms first.

1. Linear Transforms

Generally in a linear transformation we derive a sequence { nψ } from a sequence

{ nχ } based on the equation

∑
−

=

⋅=
1

0
,

M

i
inin αχψ . (3.1)

Equation 3.1 is referred to as the forward transform. The original sequence can be

recovered from the inverse

∑
−

=

⋅=
1

0
,

M

i
inin βψχ . (3.2)

We can get the same results using a matrix representation

 χψ ⋅Α= (3.3)

ψχ ⋅Β= , (3.4)

where],...,,[110 −= Mχχχχ ,],...,,[110 −= Mψψψψ , and, , are M×M matrices with Α Β

[] ji, ji,α= [] jiji ,,Α , β=Β . The forward and inverse transform matrices and Β , are

inverse of each other, and therefore

Α

I=Α⋅Β=Β⋅Α , where I is the identity matrix.

Expanding these equations in two dimensions we get the general forward linear transform

for a block of size M×M

∑∑
−

=

−

=

⋅Χ=Ψ
1

0

1

0
,,,,,

M

i

M

j
lkjijilk α . (3.5)

21

A two-dimensional transform is called separable if it can be decomposed into a

sequence of one-dimensional transforms. In the case of images this leads to a transform

of the rows, followed by a transform of the columns, or vice versa. In the separable case

equation 3.5 can also be represented as

∑∑
−

=

−

=

⋅Χ⋅=Ψ
1

0

1

0
,,,,

M

i

M

j
ljjiiklk αα . (3.6)

For a matrix representation again we have

TΑ⋅Χ⋅Α=Ψ (3.7)

and the inverse

TΒ⋅Ψ⋅Β=Χ . (3.8)

A transform is called orthonormal if the inverse of the transform matrix is the

same as its transpose

T∗− Α=Α=Β 1 . (3.9)

Orthonormal transforms are energy preserving or in other words the sum of the squares of

the original and the transformed sequences are equal. The proof is in reference [27] for

the case of one-dimensional transform:

() χχχχψψψ ΑΑ=ΑΑ=⋅=∑
−

=

TTTT
M

i
i

1

0

2 (3.10)

For an orthonormal transform with transformation matrix , it is implied that Α

IT =Α⋅Α=Α⋅Α −1* , (3.11)

and therefore

 . (3.12) ∑
−

=

===ΑΑ
1

0

2****
M

n
n

TTTT I χχχχχχχ

Combining equations 3.10 and 3.12 we get

22

∑∑
−

=

−

=
=

1

0

2
1

0

2
M

n
n

M

n
n χψ . (3.13)

2. The Discrete Cosine Transform

Among the several transforms that have been used in digital watermarking we

will introduce the Discrete Cosine Transform, which is the basis of our technique. One

can find sufficient details in several references ([27], [28], [29]). We will try to

encapsulate the necessary information here in order to make it easier for the reader to

follow the development of our research. We start from the one-dimensional case.

a. One-dimensional DCT

Given an array V of M numbers V , let us define the

sequence V where V can be written as

],...,,[110 −= Mvvv

′],...,,,...,,[0110 vvvv M −=′ ,1 vv1M −

=′][kV
],[kV

],12[kMV −−

10 −≤≤ Mk

12 −≤≤ MkM
(3.14)

We take the 2M-point DFT of V ′

∑∑∑
−

=

−
−

=

−
−

=

− −−+=′=
121

0

12

0
]12[][][][

M

Mk

Mkuj
M

k

Mkuj
M

k

Mkuj ekMVekVekVuT πππ , 0 (3.15) 12 −≤≤ Mu

Now, if we substitute in equation 3.15 we get kMl −−= 12

∑∑
−

=

−−−
−

=

− +=
1

0

)12(
1

0
][][][

M

l

MulMj
M

k

Mkuj elVekVuT ππ (3.16)

which yields

()∑
−

=

++− +=
1

0

2)12(2)12(2][][
M

k

MukjMukjMuj eekVeuT πππ , (3.17) 120 −≤≤ Mu

and therefore

∑
−

=

 +⋅=

1

0

2

2
)12(cos2][][

M

k

Muj

M
ukjkVeuT ππ (3.18)

23

As a consequence of this result, we define a new transform

==][])[(uCkVDCT
],0[

2
1 T

],[2 uTe Muj ⋅− π

0=u

11 −≤≤ Mu
(3.19)

From the preceding analysis we realize that the DCT of a vector V is derived if we take

its mirror image, concatenate the two sequences to obtain a 2M-point sequence, and then

take the first M points of the resulting 2M-point DFT.

The DCT pair is more commonly expressed as

∑
−

=

=
1

0
][1]0[

M

k
kV

M
C , (3.20)

∑
−

=

 +=

1

0 2
)12(cos][2][

M

k M
ukkV

M
uC π , (3.21)

for the forward transform, and for the inverse it can be shown ([28]) that

∑
−

=

 ++=

1

1 2
)12(cos][2]0[1][

M

u M
ukuC

M
C

M
kV π . (3.22)

The variable in the argument of the cosine is responsible for frequency

adjustments, and the factor that multiplies the cosine, adjusts the amplitude of the

function. Clearly the IDCT is the summation of cosines of different frequencies and the

DCT coefficients represent the amplitude of each cosine function.

b. Two-dimensional DCT

The two-dimensional DCT is defined as separable transform:

∑∑
−

=

−

=

 +

 +=

1

0

1

0 2
)12(cos

2
)12(cos],[),(],[

M

x

M

y M
jx

M
iyxyVjicjiT ππ , (3.23)

where

24

=),(jic
0, ,1 =ji

M

otherwise. ,2
M

The IDCT for the two-dimensional case is

∑∑
−

=

−

=

 +

 +=

1

0

1

0 2
)12(cos

2
)12(cos],[),(],[

M

i

M

j M
jx

M
iyjiTjicxyV ππ . (3.24)

Unlike the DFT, the DCT is real and it is well known that compared to the DFT it is

substantially better in energy compaction for most correlated sources. With the DCT we

avoid the large coefficients for the high frequency components that are produced in the

DFT due to the discontinuities at the boundaries.

B. THE JOINT PHOTOGRAPHIC EXPERTS GROUP (JPEG) STANDARD

The JPEG standard is one of the most widely used standards for lossy image

compression and it offers a very good data compression rate. The standard proposed by

the Joint Photographic Expert Group is based on the two-dimensional DCT and its

components can be depicted in figure 3. The JPEG standard defines three lossy

compression modes, namely, the baseline sequential mode, the progressive mode, and

the hierarchical mode. The main difference between these modes is the way in which the

DCT coefficients are transmitted. The baseline sequential mode, also called baseline

mode for short, is the simplest of the modes and is required to be present in any case

(even if other modes are used the baseline mode provides the default decoding capability

[30]).

25

I DCT QUANTIZATION CODING

Figure 3. Block diagram of the JPEG compression.

1. The Transform

The transform used in the JPEG standard is the DCT transform described earlier.

As a first step the value is subtracted from each pixel value, where P is the bit

allocation per pixel. For the case of 8-bit per pixel images, the pixel values range from 0

to 255 and . This means that after the subtraction the pixel values are in the

range [-128, 127]. This level shifting reduces the DC offset of the transformation (i.e. the

value of the DC coefficient) but has no other effect whatsoever in the results. The JPEG

standard dictates that the image is divided into non-overlapping 8×8 blocks and each

block is then DCT transformed. In case that the image's rows or columns are not

multiples of eight, the last row or column is replicated until the image reaches a multiple

of eight size. Any additional rows or columns are discarded after decoding.

12 −P

1282 1 =−P

 A more convenient method of expressing the DCT is in the form of matrix

operations. In this case the forward DCT transform is

TLVLT = , (3.25)

and the inverse DCT is

TLLV T= , (3.26)

where L is given by equation 3.27.

26

=],[jiL
,1

M

,
2

)12(cos2

 +

M
ij

M
π

10 ,0 −≤≤= Mji

10 ,11 −≤≤−≤≤ MjMi
(3.27)

This last form is particularly helpful for the implementation of the algorithm in computer

programs and will be used indeed in our development.

2. Quantization

The next step after the DCT transform is quantization. In any case quantization is

a lossy process and introduces distortion to the signal. It is obviously in our interest to

maintain the distortion to a minimum.

The distortion introduced by quantization is measured by a distance metric. The

most widely used is the Mean Square Error (MSE):

∑∑
−

=

−

=

−=−=
1

0

1

0

22)ˆ(1])ˆ[(
N

j

M

i
ijij xx

MN
xxED , (3.28)

 which applies to each M×N block. If we are interested in the size of the error relative to

the signal, we can define the Signal-to-Noise ratio (SNR), as

D
SdBSNR

2

10log10)(= , (3.29)

where is the average square value of the source output. A measure of the error relative

to the peak value of the signal is the Peak Signal-to-Noise ratio (PSNR), which is

defined as

S

px

D
x

dBPSNR p
2

10log10)(= . (3.30)

The distortion introduced by quantization is inversely proportional to the step size, which

in turn depends on the bits allocated per coefficient. Since the amount of information

conveyed by each coefficient varies, it is reasonable to allocate different number of bits

to each coefficient, with more bits to be allocated to the coefficients that carry more

27

information. As a measure of the amount of information that is carried by the DCT

coefficients we can use the variance of the coefficients. Thus coefficients with larger

variance are assigned more bits then coefficients with smaller variance.

The JPEG standard uses an 8×8 table called quantization table. The same

quantization table is used for all the image blocks. The elements of the quantization table

determine the step size that is used for the quantization of each coefficient in an 8×8

block. The JPEG standard allows different step sizes to be chosen for different

coefficients. This implies that different amount of distortion is introduced for different

frequencies. In general the higher frequency coefficients are more severely distorted with

the use of greater step size. The decision of the relative size of the step size is based on

repeated experiments that take into account the human psycho-visual system and the way

the distortions in different frequencies are perceived by the human eye. In general errors

in the higher frequency coefficients are more easily detectable and thus, in these

frequencies we use larger step size.

The JPEG standard does not specify the exact quantization matrices that should be

used, however, it suggests two quantization matrices, one for the luminance components,

and one for the chrominance components that have proven to provide excellent results.

One can create a customized quantization matrix that better suits one's needs. Tables 1

through 3 show examples of quantization matrices.

Table 1. The JPEG proposed luminance Q-table.

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

28

Table 2. The JPEG proposed chrominance Q-table.

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

If is the transform of an 8×8 luminance image block, its quantized
counterpart is given by

],[jiC
,[iCq]j

=

],[
],[],[
jiQ
jiCjiC

L
q , (3.31)

where Q is the luminance quantization table, and is the rounding division to the

nearest integer. Then C is processed through a decoder to produce the

reconstructed quantized coefficients C

],[jiL •

],[jiq

],[jiQ

],[],[],[jiQjiCjiC LqQ ⋅= . (3.32)

A quality factor q is normally used ([30]) to control the degree of quantization.

This factor lies in the range [1, 100] and it represents the quality, expressed in percent, of

the quantized image compared to the original one. A quantization factor c is then given

by

=c
501 ,50 ≤≤ q

q

9950 ,
100
22 ≤≤− qq

(3.33)

29

Table 3. The luminance Q-table proposed by the IAHS Incorporation.

8 6 5 8 12 20 26 31

6 6 7 10 13 29 30 28

7 7 8 12 20 29 35 28

7 9 11 15 26 44 40 31

9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46

25 32 39 44 52 61 60 51

36 47 48 49 56 50 52 50

The standard JPEG quantization tables of Table 3.1 and 3.2 are used directly for

q=50%. The same tables are multiplied by c to give the different quality (compression)

levels. For 100% quality, q=100, that is lossless compression, and all the elements of

c⋅QL are set to 1. A quantization example is given in figure 4.

Figure 4. fishingboat original (left) and quantized with quality factor 5% (right)
(courtesy of the Signal and Image Processing Institute at the University of
Southern California).

30

3. Coding

After the DCT transform and the quantization, further lossless compression is

achieved by proper encoding. In each 8×8 block of quantized image coefficients the DC

component is the top-left coefficient, while the highest frequency components are

towards the bottom-right. In the general case after DCT the low frequency coefficients

(top-left except the DC) have larger values as opposed to the low-frequency coefficients

(bottom-right) that have smaller values. After quantization many of the coefficients

towards the higher frequencies become zero. In order to group as many quantized zero-

value coefficients together to produce longest runs of zero values, the AC coefficients are

encoded using a zigzag path (figure 5). According to the JPEG standard the DC and AC

coefficients are encoded separately.

a. DC Encoding

The DC coefficients tend to vary slightly between successive blocks.

Therefore, only the difference, DIFF, between the current and the previous block is

encoded. For the first block, the previous block value is set to zero. The potential value of

DIFF varies in the range [-2040, 2040], however, in most cases DIFF takes relatively

small values.

DC

31

Figure 5. The zigzag path on an 8×8 block.

The number of bits S, that is required to represent DIFF is 1 to 11.

Additionally although the difference of 0 requires 1 bit to express, it is represented as a

special case with zero bits. Thus S=0 to 11 and can be broken into 12 categories. Table 4

shows the value of S for the different DIFF values. Now the compacted values are

encoded with the use of Huffman code ([37]). The codeword consists of three parts: the

code for S as obtained from Table 5; one sign bit, 1 for positive and 0 for negative; and

the S-1 least significant bits of the DIFF value. If the DIFF value is negative, in the third

part of the codeword we use instead the 1's complement of the S-1 least significant bits of

the DIFF value. In the special case of S=0 the codeword consists of only one part, the

Huffman code for S as obtained from Table 5.

Table 4. The DIFF categories.

S Difference values

0 0

1 -1,1

2 -3,-2,2,3

3 -7,-6,-5,-4,4,5,6,7

4 -15,…,-8,8,…,15

5 -31,…,-16,16,…31

6 -63,…,-32,32,…,63

7 -127,…,-64,64,…,127

8 -255,…,-128,128,…,255

9 -511,…,-256,256,…,511

10 -1023,…,-512,512,…,1023

11 -2047,…,-1024,1024,…,2047

b. AC Encoding

32

For the encoding of the AC coefficients the zigzag path described earlier

comes into use. The idea is that the quantization produces large blocks of successive

zeros especially towards the high frequencies. Here we use a combination of Huffman

coding and Run-Length coding. As we follow the zigzag path, each non-zero coefficient

is described by a composite R/S symbol: R is a 4-bit element specifying the number of

zeros between the last non-zero and this coefficient; and S is the number of bits that are

required to express the non-zero coefficient as in Table 6.

If all remaining AC coefficients are zero the End-of-Block (EOB) symbol

is set. If the number of zeros in a run exceeds 16 then the zero count recommences.

Usually two hexadecimal symbols are used to represent the composite R/S. The codeword

is again completed with two more parts; the 1-bit sign, and the S-1 last significant bits of

the value. These are used in the same manner as in the DC case, which means that the

third part is substituted by its 1's complement in the case of a minus sign.

Table 5. The Huffman code for DIFF values.

DC Luminance DC Chrominance

S Length Codeword Length Codeword

0 2 00 2 00

1 3 010 2 01

2 3 011 2 10

3 3 100 3 110

4 3 101 4 1110

5 3 110 5 11110

6 4 1110 6 111110

7 5 11110 7 1111110

8 6 111110 8 11111110

9 7 1111110 9 111111110

10 8 11111110 10 1111111110

33

11 9 111111110 11 11111111110

Table 6. The AC categories.

S Coefficient values

1 -1,1

2 -3,-2,2,3

3 -7,-6,-5,-4,4,5,6,7

4 -15,…,-8,8,…,15

5 -31,…,-16,16,…31

6 -63,…,-32,32,…,63

7 -127,…,-64,64,…,127

8 -255,…,-128,128,…,255

9 -511,…,-256,256,…,511

10 -1023,…,-512,512,…,1023

34

IV. A NON-UNIFORM WATERMARKING ALGORITHM

Through the course of our research we tried to reproduce some basic

watermarking scheme that would adequately sustain the basic attacks of cropping and

compression, while at the same time maintain sufficient transparency. Towards that end

we formed some new theoretical concepts for the development of a new algorithm. Both

the concepts and the algorithm are presented in this chapter.

A. ANALYSIS OF THE NEW CONCEPTS

1. Center of Interest Proximity Factor

We first processed the idea of rating the 8×8 blocks of the image DCT

coefficients. The motivation for this approach was the insufficient performance against

cropping that was evident in many of the studied schemes.

We assert that the resistance of the image to cropping depends heavily on the

spatial location of the image blocks that are selected for embedding the watermark

coefficients. If the coefficients are embedded on portions of the image that will be later

cropped, those coefficients will be permanently lost. It is important to note that by

transforming an image to the DCT domain in blocks of 8×8 pixels (JPEG standard), the

spatial relation of each of the blocks of DCT coefficients is maintained.

It is generally correct that in cases of commercially used images there is a Region

of Interest (RI), where most of the image information is concentrated. For the purpose of

our analysis for each given image we determine a specific point, which is called the

Center of Interest (CI). As the CI we may choose either the center of the image (M/2,N/2

for an M×N image), or any other point of the image. In the experiments to follow as the

CI we used the center of the image. Following the same rationale it is reasonable to

assume that anyone who would try to crop the image for any reason (either for attacking

our watermarking system or just because he has no interest in the whole image), he would

crop some portion near the borders of the image maintaining most of the information that

is carried around the Center of Interest. Similarly, pie type cropping (figure 6) should

probably be considered impracticable for anyone who would try to benefit from the

35

image. Our intention is to develop a method that takes into account the significance of the

region of interest in determining the 8×8 blocks where the watermark will be embedded.

Figure 6. Peripheral (left) versus pie type (right) cropping of Lena (courtesy of

the Signal and Image Processing Institute at the University of Southern
California).

For each 8x8 block of the cover image we determine the Euclidean distance

r(m,n) between the center of the block with coordinates (m,n), and the CI (with

coordinates (M/2,N/2) if the center of interest is the same as the center of the image). This

distance is then normalized over the diagonal (i.e. the maximum possible distance within

the image) to produce a normalized value rnorm, where rnorm ∈ [0,1]. This normalized

distance is then processed through a transformer with characteristic function f,

2
1))

3
2((1tan1)(+−⋅−⋅−= rnormkrnormf

π
, (4.1)

where k can typically vary in the range [10,25]. The result is the Center of Interest

Proximity Factor (CIPF=f(rnorm)). A typical distribution of the CIPF can be depicted in

figure 7.

36

Figure 7. The distribution of the CIPF over the 8x8 blocks of a 256×256 image

with k=15. The x and y axes are the coordinates of the image blocks
(32×32 blocks in an 256×256 image).

2. Complexity Factor

The main idea is to embed the watermark in the image blocks where it could not

be detected by the HVS. In the literature there have been several papers addressing this

issue. One such attempt is to use the variance of the image blocks in the space domain as

a measure of their embedding capacity ([31]). This means that if the variance of a block

in the space domain is higher, we can embed in this block larger watermark coefficients,

with lower probability that the produced distortion will be detected by the HVS. We

claim that this is not quite correct, and we can prove the validity of our claims with a

trivial example. In figure 8, both blocks (8×8) have the same number of black and white

pixels. In spite of having different pixel arrangement, both blocks have the same variance

(0.2540) in the space domain. We can obviously tell that changing any one pixel on the

left block will be immediately detected by the human eye, whereas, the same alteration

on the right block (which has a more complicated visual pattern) would require more

thorough observation for detection.

Our idea is to weight the absolute value of the DCT coefficients of an image

block differently, according to the part of the spectrum that they describe, and then add

them up to produce a Complexity Factor (CF) for each block. With our method for the

37

same example of figure 8, we get a factor of 44.2044 for the left block against a factor

790.8275 for that on the right.

In our method we have excluded the DC coefficient from the calculations. The

reason is that the DC coefficient represents the average pixel offset rather than frequency,

and therefore should be ignored. Thus, we create the vector weight=[1,2,…,63], which we

use to weigh the absolute value of the DCT coefficients using the formula

iDweightiCF ′⋅= , (4.2)

where Di is a vector (1×63) containing the DCT coefficients of the ith block of the image

according to the standard zigzag arrangement, (·) is the matrix multiplication operation,

and CFi is the resulting Complexity Factor for that block.

B. ENCODER

The encoder is described in principle by the block diagram in figure 9. Both the

watermark and the image are DCT transformed and processed through the embedding

algorithm. The outcome is then IDCT transformed and normalized to compensate for any

errors that exceed the allowed limits of the pixel values

Figure 8. Two binary 8×8 blocks with the same number of ones and zeros but
different perceptual characteristics.

38

1. Priority Coefficient

In Section A we saw how the CIPF and the CF are calculated for each image

block. Now, we introduce a new coefficient, the Priority Coefficient (PC). Each image

block i, is associated with a Priority Coefficient PCi. The PCi is defined as the CIPFi,

scaled by the CFi.

iCFiCIPFiPC ⋅= . (4.3)

The image blocks are sorted according to descending order of their PCi, to

produce the sequence of blocks B1, B2, … , BK, (K is the total number of image blocks).

Blocks that come first in the sequence are less likely to be cut off after cropping, and

have larger variance in the lower and middle frequency coefficients allowing for higher

unnoticeable distortion. Thus, they are capable of successfully “hiding” higher watermark

coefficients or in other words they have larger embedding capacity.

2. Embedding Algorithm

In each block of the image DCT coefficients we embed a certain number of

watermark DCT coefficients. In order to preserve transparency, we embed a small

number of watermark coefficients in each 8×8 image block. We refer to the number of

watermark coefficients that are embedded in one image block as the embedding size (es).

A typical embedding size is 2, 4, or 8 watermark coefficients per image block. This

means that the watermark size cannot be larger than m⋅K, where m is the embedding size

(m∈[2,4,8]), and K is the total number of 8×8 blocks in an image.

We tried to produce a scheme that embeds the watermark coefficients into the

image blocks in the most efficient way. The rationale can be described by the following

rules:

• The watermark coefficients with higher magnitude should be embedded in the

higher-rated image blocks.

This serves two purposes: higher magnitude watermark coefficients are in the

general case the most important ones and as such they need higher protection

against cropping; additionally, they cause greater distortion to an image block

39

after embedding, and as already explained the higher rated image blocks are

less susceptible to distortion.

• Not all the higher magnitude watermark coefficients should be embedded in

one image block.

Otherwise the distortion in that block will be severe and will not be tolerated

by the HVS.

Based on these rules we created the algorithm illustrated in figure 10. The DCT

coefficients of the whole watermark are sorted according to descending order of

magnitude [c1, c2, …, cL], where L is the total number of watermark coefficients. They are

then divided into m groups with equal number of coefficients [c1, c2, … ,c(L/m) | c(L/m)+1, …

, c(2L/m) | … | c((m-1)L/m)+1, … ,cL]. The coefficients are now regrouped to form the

embedding sets. Each set contains m coefficients, one from each group. The first

coefficient from the first, second, … , mth group form the first embedding set es1=[c1,

c(L/m)+1, … , c((m-1)L/m)+1], the second coefficient from the first, second, … , mth group form

the second embedding set es2=[c2, c(L/m)+2, … , c((m-1)L/m)+2], and so on, until es(L/m)=

[c(L/m), c(2L/m), … , cL]. The result is (L/m) sets sorted according to descending order of

embedding weight from es1 to es(L/m). The sets that come first in the list require image

blocks with larger capacity. Therefore we embed es1 to B1, es2 to B2 etc.

Each set is embedded into m coefficients of the corresponding image block

following the formula:

1)()(iCxstartiuxstartiu ⋅+=′ α

2)1()1(iCxstartiuxstartiu ⋅++=+′ α

imCmxstartiumxstartiu ⋅+−+=−+′ α)1()1(

 (4.4)

where α is a weighting factor that typically ranges around 0.1, Cij is the jth coefficient of

the ith embedding set, uij is the jth coefficient on the zigzag arrangement of the ith block,

and u'ij is the modified image coefficient uij after embedding. For example, for m=4, c5

40

corresponds to C21. The index xstart denotes the value of j in uij where the embedding

starts.

I

W

embed IDCT normalize
(optional)

Im

DCT

DCT

Figure 9. The basic encoder.

Normalization may be used as the last step that takes place in the space domain

after the marked image coefficients have been IDCT transformed and have produced the

marked image. The use of normalization is optional and the concept is further explained

in the next chapter.

41

Wm coeffs
sorted by
magnitude

Wm coeffs
divided into

4 groups

c1, c(L/4)+1, c(L/2)+1, c(3L/4)+1

…

cL/4, cL/2, c3L/4, cL

Embedding sets

…

B(L/4+1)
…

Image blocks
sorted
by PC

c1
c2

cL

…

cL/4

c1
…

c(L/4)+1
…

…

…

cL/2

c(L/2)+1

c(3L/4)+1

c3L/4

cL
B(L/4)

B1

B2

Figure 10. The algorithm applied for a watermark with L coefficients and

embedding size 4.

C. DECODER AND DECISION MAKING

The decoder (figure 11) works in reverse order and requires both the original

image and the watermark. The DCT coefficients of the test image are subtracted from the

DCT coefficients of the original. At this stage the sorting information of the watermark

coefficients is also needed to correctly reassemble the potentially recovered watermark.

The result is IDCT transformed to produce the recovered object, Wr (product of the

decoding process).

The decision making device is based on classical detection theory ([32]). The

recovered object is now compared to the original watermark by calculation of the

correlation coefficient ρ, of the two:

42

∑ ∑∑⋅∑

∑∑
=

i i j
jiWr

j
jiW

i j
jiWrjiW

2)],([2)],([

),(),(
ρ , (4.5)

where W(i,j) is the (i,j) pixel of the original watermark, and Wr(i,j) is the (i,j) pixel of the

recovered object. The decoder decides whether the recovered object corresponds to an

actual watermark or not, based on a predetermined threshold T. Higher ρ means that W

and Wr are highly correlated and therefore have higher similarity to each other. This is

interpreted as higher confidence that the processed image has been indeed watermarked.

In the case where W and Wr are independent, ρ is normally distributed with zero mean

([33]). Therefore, the probability of ρ exceeding a certain threshold can be directly

obtained from the normal distribution. The threshold can be accordingly adjusted to

match our probability of detection, PD, and probability of false alarm, PFA, requirements.

Denormal
ization

(if used in
encoder)

Itest

DCT

DCT
I

extract IDCT
Wr

(W)

Figure 11. The decoder.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

V. IMPLEMENTATION ISSUES

In this chapter we describe several interesting parts of our research. Not all of

them were successful, and not all of the successful ideas of this chapter were actually

incorporated in the model presented in chapter four.

A. KEYING

To enhance the security of the watermark we can use a unique key. The key

should be applied directly on the watermark, after the error correction code if any, but

before any other processing. In the case of a random watermark however, the use of the

key as a security feature is redundant or the key should also be the watermark itself. We

can extend spread spectrum techniques ([4]) to watermarking by applying a key with

length multiple of the watermark.

We implemented the keying feature in our algorithm using the following process:

We started from an M×N grayscale watermark, W , with pixel values, W

(1), integers in the range [0, 255]. Each pixel is translated into binary

with 8 bits per pixel (W , 81). Essentially we now have

an M×N×8 binary matrix W . An equally sized binary Key, , is also produced,

and the two are XORed

],[ji

NjMi ≤≤≤≤ 1 ,

],,[kjib

b

1 ,1 , ≤≤≤≤≤ NjMi

K

≤ k

],,[kji

.81 ,1 ,1],,,[],,[],,[≤≤≤≤≤≤⊕= kNjMikjiKkjiWkjiW bbk (5.1)

The binary W is translated back into 8-bit integer representation to produce the

keyed watermark W . The concept is implemented in our algorithm with two functions;

keying and bitPlanes (appendix A). The former produces the Key and performs the actual

XOR operation while the latter decomposes the watermark into 8 binary planes (figure

12) with the plane at the back containing the Least Significant Bits (LSB) of each pixel

value that has been translated into binary.

bk

k

45

137=(10001001)b

W

1

0

0

1

0

0

0

1

Wb
i

k

j

Figure 12. The bitPlanes function concept.

B. QUANTIZATION

We know from Chapter III that in JPEG compression the coding part is lossless

and the errors that occur during the process are introduced by the quantization element

(quantization noise). In order to test the performance of the proposed algorithm against

JPEG compression it was therefore sufficient to reproduce the quantization component of

the compression algorithm.

Since all our experiments were conducted with grayscale images we used the

standard JPEG luminance quantization table. In essence equations 3.31 and 3.32 were

modified to

(5.2) ,
],[

],[],[

=

jicQ
jiCjiC

L
q

(5.3)],,[],[],[jicQjiCjiC LqQ ⋅=

where c is given by equation 3.33 and is the standard JPEG luminance quantization

table of Table 3.1.

LQ

46

C. NORMALIZATION

In the case where we have to work with parts of an image that are close to the

limits of the pixels’ dynamic range [0, 255], embedding the watermark coefficients and

returning back to the space domain may produce results that exceed this dynamic range

(figure 13 left). The most straightforward solution is to truncate all the off-range values to

either 0 or 255. This approach may produce acceptable results in terms of transparency,

but it introduces additional irreversible errors to the decoder, thus reducing the

performance of the system.

Figure 13. Lena marked (left) and marked and normalized (right). The black and
white dots that can be seen in the left image are considerably fewer in the
normalized image. In this case stripes was used and the watermark
coefficients were randomly distributed throughout the image.

In cases where we are allowed to increase the bit allocation, we could use an

invertible normalizer (figure 13). We devise a normalization function that maintains the

dynamic range of the pixel values within the allowable limits. Our choice for the forward

and the reverse function was

2
1))

2
1((tan1 1 +−⋅⋅= − xny

π
, (5.2)

47

n

y
x

))
2
1(tan(

2
1 −⋅

+=
π

. (5.3)

The normalization parameter n is used to adjust the steepness of the curve. The value of

3.5 was experimentally proven to work better since it provides good pixel transformation

(no shift) in the mid ranges. The characteristic curve of equation 5.2 for n=3.5 is shown

in figure 14. As shown in the figure, the curve is limited within the range [0, 1]. This can

be adjusted to [0, 255] by multiplication of equation 5.2 by 255. Appropriate

modifications should also be made to the inverse function (equation 14).

Figure 14. The normalization function for n=3.5.

The possible price to pay for the use of normalization is that the parts of the image

with pixel values near the limits of the dynamic range are altered and their pixel values

are shifted towards the center of the range. There are cases where this shift is perceptible

to the HVS and therefore the success of the method depends heavily on the histogram of

the image.

Any invertible function may be used instead, provided that it is limited within the

allowable range. The effectiveness of the function is measured mainly by the quality of

the normalized image or in other words by whether any changes are perceptible to the

48

HVS. We would like a good normalization function to be linear with a slope of 1 (θ=45°)

for the most part and non-linear only at the boundaries.

In figures 15 and 16 we show the effect of the normalization on two images,

namely pentagon and arctic hare, with intensity histogram shown. In figure 15 we see

that the histogram of pentagon is concentrated towards the middle of the [0, 255] range.

Our function in this case, works particularly well and the normalization in the right image

is virtually undetected. The changes in the histogram, which indeed occur as we observe

comparing the two plots, are imperceptible by the HVS.

Figure 15. The original (left) and the normalized (right) pentagon and their

corresponding histograms (courtesy of the Signal and Image Processing
Institute at the University of Southern California).

49

In figure 16 we clearly see the effect of normalization in images with many pixels

towards the boundaries of the allowable range. In arctic hare the white shades (pixel

values near 255) are dominating the image and therefore the histogram displays a large

concentration of pixels towards the right end. The characteristic function that we used,

performs poorly in this extreme situation as it imposes significant changes to most of the

pixel values after processing through the normalizer.

Figure 16. The original (left) and the normalized (right) arctic hare and their
corresponding histograms (courtesy of R. E. Barber, Barber Nature
Photography).

With the average image, the scheme seems to perform quite well. The use of

normalization is optional and drives our attention to the trade-off between transparency

and performance.

50

E. DECISION MAKING DEVICE

For the decision making device, as explained in the previous chapter, we used the

correlation coefficient, ρ, between the original watermark, W, and the recovered object,

Wr. where ρ was derived from equation 4.5. In the literature there have been several

works that use, instead, a different formula (equation 5.4) for the derivation of ρ:

∑ ∑∑⋅∑

∑∑
=

i i j
jiW

j
jiW

i j
jiWrjiW

2)],([2)],([

),(),(
ρ , (5.4)

References [22], [23], [31], [35] use equation 5.4 or variations of it, which all

have in common that there is no participation of the recovered object element, rW , in the

normalizing denominator.

We claim that equation 4.5 (also used in references [33] and [34]) is a more

accurate approach. By using 5.4 it is possible that we obtain values of ρ beyond the range

[0, 1]. Equation (5.4) can be rewritten as:

∑∑

∑∑
=

i j
jiW

i j
jiWrjiW

2)],([

),(),(
ρ . (5.5)

Let us consider the special case where W and rW are exactly the same except for one

pixel, say (κ,λ), where),(),(λκλκ W>Wr . Clearly, in this case, the numerator becomes

greater than the denominator and thus ρ exceeds 1.

This means that setting the threshold T to 1 does not guarantee that only perfectly

retrieved watermarks will pass the evaluation test of the decision making device. In other

words the normalization is not correct, and we obtain erroneous impressions leading to

incorrectly setting of the threshold value.

F. ERROR CORRECTION CODING

51

In an attempt to reduce the number of errors that our scheme suffered after attacks

(quantization), we tried to implement Error Correction Coding in our algorithm. The 7/15

BCH code capable of correcting up to two errors ([36]) was selected because it was more

convenient in terms of overhead and correction capability.

We numbered the watermark pixels p, from 1 to L ([p1,p2,…,pL]), starting from

the top left corner and sweeping the watermark row-wise from left to right and from top

to bottom. From each pixel we encoded the seven most significant bits (leaving out the

LSB). These are the bits that contribute more to the determination of the pixel value

which in turn affects the result of the correlation of the recovered watermark with the

original watermark at the decision making device. The smaller the number of errors in the

most significant bits, the higher the correlation between the recovered and the original

watermark. Therefore it is very important that these bits remain free of errors.

For every watermark pixel that is encoded (actually its seven most significant

bits), we get an 8-bit (or one pixel) overhead from the code. In essence after encoding an

M×N (=L) watermark we obtain an extra M×N×8 bits or M×N (L) pixels that we need to

accommodate. The overhead bits form pixels that fill first columns and then rows to the

right and bottom of the image. When the overhead pixels are exhausted and the expanded

watermark is not a perfect rectangle, we zero pad the remaining bit positions in order to

get an (M+e)× (N+e) watermark, where e is the number of extra rows and columns that

were added to the original.

This is illustrated in figure 17. There, one can see the [p1,p2,p3,…,pκ,pλ,pµ,...,pL-2,

pL-1,pL] initial pixels, the respective overhead bits, and how they shape the watermark.

In Appendix A we show the results of the implementation of the ECC.

52

…

p1 p2 p3

pκ pλ pµ

pL-2 pL-1 pL

pL pL-1 pL-2

o3

o2

o1

oµ

oλ

oκ

000 0 0

Figure 17. The concept of expanding the watermark after BCH coding, where the
pixels p, of the watermark are numbered from 1 to L, and o are the
overhead bits.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

VI. RESULTS

Part of the results presented here are also included in reference [37].

A. TESTED IMAGES AND WATERMARKS

1. Images

In this research we used several images bearing different visual and spectral

characteristics. The classic images (Lena, figshingboat etc) were primarily used along

with some others. There was however interest in conducting experiments with images

that had some particular spectral or visual characteristics, which could not be found in the

regular images. Therefore we produced a set of what we called artificial images that fitted

our needs.

a. Regular (Non-synthetic) Images

We used six images that are shown in figure 18. The distribution of their

pixel values is shown in figure 19 where we can see their different characteristics. Lena,

peppers and fishing boat cover a broad portion of the allowed range and have various

peaks. Arctic hare and fishing boat have narrower histograms with one large peak, and

New York exhibits a rather uniform distribution of its pixel values.

b. Artificial (Synthetic) Images

The four artificial images (figure 20) may be grouped into two pairs.

ImageB and imageSB form the first pair, while imageR and imageU form the second one.

Both images of the first pair contain only four different levels of grayscale. In imageB we

have four large 256×256 blocks. On the other hand imageSB is divided into a large

number of similarly arranged smaller blocks of 4×4. Thus the two images have exactly

the same histogram but different visual and spectral characteristics. Similarly in the case

of imageR and imageU they both contain the whole range of grayscale shades but again

they have different visual complexity.

55

Figure 18. The six regular images that were used in the research.1

1 The image arctic hare is courtesy of Robert E. Barber, Barber Nature Photography. The image New

York is courtesy of Patrick Loo, University of Cambridge. All other non-synthetic images used in this
research are courtesy of the Signal and Image Processing Institute at the University of Southern California.

56

Figure 19. The histograms of the regular images.

2. Watermarks

In the course of our research we first had to decide what watermarks we should

use. In the literature different types of watermarks have been proposed. The type of

watermark depends on the general concept that we have adopted for our watermarking

scheme. One of the most fundamental questions is whether the watermarking algorithm is

open, or its details are kept secret. In the latter case any pattern, however simple and

abstract, may be used as a watermark. In the former case however, a key is required to

take care of the security issues. One of the most common suggestions among researchers

is a random watermark, which is also a security component. The watermark itself is a key

that an intruder is not aware of, and thus cannot verify its existence or removal.

57

There may be cases however, where a perceptual watermark may be preferable.

Such a watermark might be more appealing for commercial purposes as it contains a

visually recognizable pattern, such as a copyrighted logo. This implies that either the

algorithm should be kept secret or that a unique key should be used for protection.

Figure 20. The four artificial images: imageB (top left), imageSB (top right),
imageR (bottom left), and imageU (bottom right).

a. Watermark Selection

In our research we tried to test several different cases and this justifies the

selection of our watermarks (figure 21). The watermark stripes is a simple visual pattern

and is used as a perceptual watermark. NPSlogo is also a perceptual watermark that also

has some random characteristics. Finally, randWm is a watermark whose pixels are

58

randomly chosen and follow a uniform distribution. All three watermarks are encoded

with 8-bit grayscale in the range ([0, 255]), with dimensions 64×64. We decided to select

gray scale watermarks although this imposes higher burden to the marked image in terms

of embedding capacity requirements. Grayscale allows for a much larger set of possible

keys, thus, providing better security and at the same time allows for more complicated

perceptual watermarks.

Figure 21. The three used watermarks: stripes (left), NPSlogo (middle) where
everything except the letters' background is random, and a randWm (right)
with all pixels uniformly distributed in the range [0, 255].

B. TESTING THE NON-UNIFORM ALGORITHM

1. Transparency

Using the algorithm of Chapter IV with no normalization, and images with 8-bit

accuracy, we obtain very good performance in terms of the transparency of the

watermark. We can appreciate the results from figures 22 and 23, where we show the

marked image next to the original one to allow comparisons. All these examples are

produced with the NPSlogo watermark, α=0.1, xstart=4, es=2. If the transparency

achieved is evaluated as insufficient, one can make appropriate adjustments to α and

xstart to satisfy his own requirements.

59

Figure 22. Original and marked (NPSlogo) Lena (top) and peppers (bottom), with

α=0.1, xstart=4, es=2. All images are of type uint8 (courtesy of the Signal
and Image Processing Institute at the University of Southern California).

60

Figure 23. Original and marked (NPSlogo) arctic hare (top) and New York

(bottom) with α=0.1, xstart =4, es=2. All images are of type uint8. (arctic
hare is courtesy of R. E. Barber, Barber Nature Photography, New York is
courtesy of P. Loo, University of Cambridge)

2. Watermark Recovery from Marked Image

The marked image is of the MATLAB type "unsigned integer with 8 bits" (uint8).

Should the system work perfectly, the decoder would normally produce a recovered

watermark, which would be identical to the original, since we do not apply any

distortions. However the uint8 type is an integer number in the range [0 255] and

therefore has finite accuracy (8 bits). After embedding, the IDCT produces non-integer

results that are rounded to the nearest integer, and therefore some noticeable distortion is

present (figure 24). This means that the correlation coefficient ρ, is in most cases lower

than 1 even when the marked image has not been tampered with.

61

Figure 24. Recovered watermark from the marked arctic hare of figure 23.

3. Performance after Quantization

The performance of the algorithm under quantization varies with the frequency

band that is selected for the embedding of the watermark coefficients. Figures 25 – 28

show that as we embed in higher frequency coefficients (larger xstart), there is a general

tendency that the performance becomes poorer (smaller ρ). This is expected, since the

higher frequency coefficients are subjected to severe quantization and therefore any small

amount of watermarking information contained in these coefficients is essentially

eliminated. However we also see that the type of the watermark also matters. A

watermark with more random elements (NPSlogo as opposed to stripes) produces

considerably worse results. This can be explained as follows: A simple perceptual pattern

like stripes has some large coefficients in the lower frequencies and most of the

remaining DCT coefficients are zero. The high frequency coefficients are severely

quantized and after quantization the watermark information is truncated to zero. If the

watermarking information was zero anyway, then the quantization has essentially no

effect and therefore the performance is almost the same regardless of the frequency band

of the embedding. This train of thought is also verified by the images imageB and

imageSB (figure 27). In each 8×8 block the former contains only a DC offset and all the

rest of the coefficients are zero. The latter however, has non-zero coefficients up to the

middle frequencies. Therefore for values of xstart up to the middle frequencies the

performance of these two artificial images is different. From the point where the

coefficients become zero and on, their performance becomes identical. This observation
62

applies only with the watermark stripes because the NPSlogo contains random pixels that

vary considerably for different iterations.

For smaller embedding size es, we expect that the transparency of the watermark

increases, since the distortion applied to each block is considerably smaller. Additionally,

with smaller es, the results reveal a tendency for slightly higher ρ (figures 29, 30, 31).

Figure 25. ρ for the regular images with stripes and α=0.1, es=2.

63

Figure 26. ρ for the regular images with NPSlogo and α=0.1, es=2.

Figure 27. ρ for the artificial images with stripes and α=0.1, es=2.

64

Figure 28. ρ for the artificial images with NPSlogo and α=0.1, es=2.

Figure 29. ρ for Lena with various embedding sizes and NPSlogo, α=0.1.

65

Figure 30. ρ for fishing boat with various embedding sizes and NPSlogo, α=0.1.

Figure 31. ρ for New York with various embedding sizes and NPSlogo, α=0.1.

66

Figures 25 – 28 show that the embedding setup can be adjusted accordingly to

produce values of ρ very close to 1. This means that an appropriate threshold T can be

chosen depending on our PFA and PD requirements (see section IV.C).

4. Robustness to Cropping

The performance of our algorithm to cropping varies with the images marked, and

there are cases where it can be really exceptional. The results are shown in tables 7 and 8.

As expected, the performance improves as the size of cropping increases. However there

should be a point where the size of the cropping becomes too large for the algorithm to

handle. From that point on, too many essential watermark coefficients embedded towards

the Center of Interest, are cropped out, making it impossible for the algorithm to perform

sufficiently. At this point however the image is so severely cropped that becomes useless

for any potential adversary (figure 32).

Table 7. Performance of the Non-uniform Algorithm against Cropping (NPSlogo, α=0.1,
xstart=4, es=2).

Image
Maintained pixels

after cropping

(initially 512×512)

ρ
without
CIPF

ρ
with
CIP

F

Improve
ment

Lena (50:460,50:460) 0.5121 0.85
24 66.45%

New York (50:460,50:460) 0.0544 0.26
89 394.3%

fishing boat (50:460,50:460) 0.2612 0.38
55 47.58%

peppers (50:460,50:460) 0.0671 0.38
10 467.81%

67

Table 8. Performance of the non-uniform algorithm against cropping (NPSlogo, α=0.1,
xstart=4, es=2).

Lena fishing boat
Maintained pixels

after cropping

(initially 512×512)
ρ

without
CIPF

ρ
with
CIP

F

Improve
ment

ρ without
CIPF

ρ with
CIPF

Improve
ment

(11:502, 11:502) 0.5704 0.91
72 60.79% 0.5749 0.8467 47.27%

(31:482, 31:482) 0.4143 0.75
58 82.42% 0.2728 0.5595 105.09%

(51:462,51:462) 0.3038 0.55
75 83.50% 0.1663 0.3522 111.78%

(71:442, 71:442) 0.2253 0.36
81 63.38% 0.1580 0.2390 51.32%

(91:422,91:422) 0.1906 0.29
06 52.46% 0.1081 0.1540 42.46%

(111:402, 111:402) 0.1384 0.18
38 32.80% 0.0921 0.1223 32.79%

Figure 32. Cropped fishing boat with remaining pixels [111:402, 111:402] from a

512×512 image (courtesy of the Signal and Image Processing Institute at
the University of Southern California).

68

C. SELECTION OF THE WEIGHTING FACTOR

The weighting factor α, used in the embedding algorithm (section IV.B) also

affects the system's performance. Figures 33 and 34 show that New York and Lena

behave similarly, both in the case where the image is quantized and in the case where it is

not.

Examining the performance, ρ, of the system with New York for various values of

α when the marked image is of type uint8, we notice that, in case of no attack to the

marked image, we get a maximum of ρ at α=0.1, with the values varying slightly between

0.9477 (for α=0.6) and 0.9934 (for α=0.1). If quantization is applied, it is reasonable that

the performance would be different. Up to a certain value of α, we have a dramatic

performance improvement. As α still increases, the amount of improvement is reduced

and the performance becomes essentially unchanged. The improvement stops for α

around 0.3. At this value of the weighting factor however, it is possible that the effects of

the embedding in the marked image are already visible (figure 35). The results after

quantization can be significantly worse if we choose to embed in higher frequency

components (subjected to severe quantization). In the scheme we proposed in Chapter IV

we use α=0.1 which appears to give the best performance if no quantization is used.

Figure 33. Performance measured on the marked New York image (uint8) for

various values of α (watermark: NPSlogo, xstart=4, embedding size=2).
69

Figure 34. Performance measured on the marked Lena image in uint8 for various

values of α (watermark: NPSlogo, xstart=4, embedding size=2).

Figure 35. Lena marked with NPSlogo and xstart=4, es=2. The distortion at α=0.3

is clearly visible (courtesy of the Signal and Image Processing Institute at
the University of Southern California).

70

VII. CONCLUSION

A. SUMMARY

In this thesis we studied the use of the DCT in digital watermarking. After a

historic overview and a brief presentation of the relevant work that has been conducted

by other researchers (Chapter II), we went through a brief analysis of the theory behind

the DCT and the JPEG compression (Chapter III), so that the reader would obtain all the

necessary background for the comprehension of our work.

In Chapter IV we presented a new non-uniform watermarking algorithm that is

based on the Discrete Cosine Transform. The algorithm embeds normally in the lower

frequency components (this case proved to give better results), and achieves sufficient

transparency of the watermark, but also robustness against quantization (i.e. JPEG

compression) and cropping (Chapter VI). Finally, some other parts of our research worth

mentioning are discussed in Chapter V.

B. SIGNIFICANT REMARKS

The performance of Discrete Cosine Transform - based digital watermarking still

needs further investigation. The development of the JPEG 2000 standard and how this

will affect the domination of JPEG should be taken into account for future research in the

watermarking area.

There are qualities of the grayscale watermark that affect the recovery process. A

simple perceptual (stripes) watermark behaves differently from a highly random one

(NPSlogo). The randomness imposes an additional obstacle to the decoder and reduces

the performance of the decision making device especially in the higher frequencies.

71

In the proposed scheme we used a unique metric for measuring the relative

capacity of each image block to receive watermark information without perceptual

distortion of the overall image. In addition another metric is used (CIPF) to defeat

cropping attacks. The combination of the two metrics is used to prioritize the image

blocks and determine the watermark coefficients that will be embedded in each one of

them. The achieved transparency appears to be sufficient but the evaluation is rather

subjective, based only on observation.

The scheme responds quite well to quantization allowing for the determination of

a threshold T according to our PFA and PD requirements. As we embed towards higher

frequency coefficients the performance becomes poorer because of the severe

quantization in the higher frequency bands. Decreasing the embedding size appears to

slightly contribute to improvement of the overall performance. Additionally ρ is also

affected by variations of the weighting factor α. The experiments show that there is a

trade-off because as we increasing α, we improve ρ but also the transparency is

negatively affected. We should bear in mind that there are certain limits suggested by

data where increasing α is meaningful. Beyond these limits the watermark correlation

coefficient is not further improved and the transparency is essentially degraded.

The performance of the proposed scheme against cropping attacks, ranges from

mediocre to exceptionally good results, depending on the input data. Improvement of the

correlation coefficient exceeding 100% is frequently observed depending on the tested

image and the amount of cropping.

C. FUTURE WORK

Embedding the coefficients in a way that will take full advantage of the human

visual system’s characteristics is a big goal of the watermarking community. Further

research in this subject is required to investigate the possibility of incorporating our

metric to the Just Noticeable Difference (JND) models that have been proposed.

In addition, in this work the transparency of a watermarking algorithm is judged

by the subjective decision of independent observers. The possibility of developing a

formal model for the evaluation of the transparency may be investigated. However this

task is not trivial. A simple correlation test between the original and the marked image

would not work. This would detect any differences between the two but cannot tell if

these differences occur in a visually perceptual manner. A JND model could be used as

the basis for the evaluation of the transparency ([24]), but then it should not also be used

in the embedding model. Otherwise the judgment would be biased and therefore unable

to give dependable results.

72

D. EPILOGUE

The watermarking community is still far from presenting a dominating

watermarking scheme. The research in digital watermarking has been dictated by the

developments in the digital world and the need for a dependable copyright protection

scheme. In other words, the watermarking community has been just following the

advances of other technologies. Maybe this is the largest drawback that keeps the

watermarkers away from the desired goal. The extreme pace with which the digital

technologies are progressing, does not allow sufficient time for the research in the various

watermarking areas of interest to mature and produce results. A more independent path

may be the secret for the success, and maybe, in the future, the compression algorithms or

storage techniques will be following the developments of the watermarking world.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX A. RESULTS OF THE ECC IMPLEMENTATION

The attempt to incorporate an error correction code in the scheme failed because

of the insufficient error correction capability of the code we chose. Investigating the bit

error rate between the original and the recovered watermark we see that in general is

beyond the 2 bits that the 7/15 BCH code is capable of correcting. The results are shown

in figures 36 – 39. The bit error rate, BER, calculates the number of errors in bits per

pixel (figures 36, 37). To get a better idea about the distribution of errors among the

pixels we also used a modified bit error rate metric, the BERmod, which is the number of

errors in bits per pixel in error (figures 38, 39). This is determined by the total number of

bit errors and divided by the number of pixels where errors are detected. For all the tested

images the results were very similar and definitely exceeded 3 bits per pixel for both

metrics. The BERmod plots are almost the same as the BER ones, showing that the errors

were evenly distributed among the watermark pixels.

Figure 36. BER of regular images with watermark stripes.

75

Figure 37. BER of regular images with watermark NPSlogo.

Figure 38. BERmod for regular images with watermark stripes.

76

Figure 39. BERmod for regular images with NPSlogo.

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

APPENDIX B. SOFTWARE

%**�

%**�

%� Ioannis� Retsas�

%� August� 12,� 2001�

%� LAST� MODIFICATION:� February� 4,� 2002�

%� FILE� NAME:� Encoder�

%� DESCRIPTION:� This� is� the� main� encoding� file� of� our� watermarking� framework.�

%**�

%**�

�

clear� all�

delete� C:\matlabR12\work*.mat�

disp('Processing...')�

%********************************SETUP� SECTION*******************************�

I� =� imageSelectionC;� %� selecting� an� image� for� processing� from� the� gallery�

save� C:\matlabR12\work\I� I�

[M,N]� =� size(I);� %� M,N� are� the� image� dimensions�

if� ((M/8)/fix(M/8)� ~=� 1)� |� ((N/8)/fix(N/8)� ~=� 1)�

� � � � fprintf(1,'The� dimensions� of� the� selected� image� are� not� multiples� of� 8\nand�
errors� will� occur;\nTHE� PROGRAM� IS� TERMINATED\N');� �

� � � � return�

end�

fprintf(1,'The� watermark� size� is� set� by� default� to� 64x64;\n');� �

%� Any� modification� of� the� size� should� consider� the� dimensions� of� the� image� and� �

%� the� embedding� size.� �

Mw� =� 64;�

Nw� =� 64;�

W� =� WmTypeC(Mw,Nw);�

save� C:\matlabR12\work\W� W� �

%-------------------------WEIGHTING� FACTOR-----------------------------------�

alpha� =� input('Set� the� weighting� factor� alpha� (recommended� value� 0.1);\n');�

disp('Processing...')�

save� C:\matlabR12\work\alpha� alpha�

%------------------------------XSTART--�

start� =� input('Set� the� index� of� the� coefficient� (1� to� 64)� where� the\nembedding�
would� start� in� each� block;\n');�

while� (start� <=� 0)|(start� >=� 64)|(start/fix(start)~=1)�

79

� � � � fprintf(1,'Your� choice� was� either� beyond� the� allowed� range� or� was� not� an�
integer;\n');� �

� � � � start� =� input('Try� again:\n');�

end�

disp('Processing...')�

save� C:\matlabR12\work\start� start�

%----------------------------EMBEDDING� SIZE----------------------------------�

fprintf(1,'Set� the� embedding� size� (number� of� watermark� coefficients� per�
block);\n');�

length� =� input('Choose� 2,� 4� or� 8;\n');�

while� (length� ~=� 2)&(length� ~=� 4)&(length� ~=� 8)�

� � � � start� =� input('Your� choice� should� be� 2,� 4� or� 8;� Try� again:\n');�

end�

disp('Processing...')�

save� C:\matlabR12\work\length� length�

%-------------------------------CROPPING� SETUP-------------------------------�

flagCrop� =� input('For� cropping� press� 1;� otherwise� press� 0;\n');�

while� (flagCrop� ~=� 0)&(flagCrop� ~=� 1)�

� � � � flagCrop� =� input('Your� choice� should� be� either� 0� or� 1;� Try� again:\n');�

end�

disp('Processing...')�

save� C:\matlabR12\work\flagCrop� flagCrop�

if� flagCrop� ==� 1�

� � � � leftB� =� input('Enter� the� column� that� will� be� the� new� LEFT� border� of� the�
Image;\n');�

� � � � disp('Processing...')�

� � � � rightB� =� input('Enter� the� column� that� will� be� the� new� RIGHT� border� of� the�
Image;\n');�

� � � � disp('Processing...')�

� � � � upperB� =� input('Enter� the� row� that� will� be� the� new� UPPER� border� of� the�
Image;\n');�

� � � � disp('Processing...')�

� � � � lowerB� =� input('Enter� the� row� that� will� be� the� new� LOWER� border� of� the�
Image;\n');�

� � � � disp('Processing...')�

� � � � cropParam� =� [leftB� rightB� upperB� lowerB];�

� � � � save� C:\matlabR12\work\cropParam� cropParam�

end�

%-------------------------------QUANTIZATION---------------------------------�

flagQ� =� input('For� quantization� press� 1;� otherwise� press� 0;\n');�

while� (flagQ� ~=� 0)&(flagQ� ~=� 1)�

� � � � flagQ� =� input('Your� choice� should� be� either� 0� or� 1;� Try� again:\n');�

80

end�

disp('Processing...')�

%--QUALITY� FACTOR--�

if� flagQ� ==� 1�

� � � � q_jpeg� =� input('Set� the� quality� factor� q_jpeg� in� the� range� [1,100];\n');�

� � � � while� (q_jpeg� <� 1)|(q_jpeg� >� 100)|(q_jpeg/fix(q_jpeg)~=1)�

� � � � � � � � fprintf('Your� choice� was� either� beyond� the� allowed� range� or� was� not� an�
integer;\n');� �

� � � � � � � � q_jpeg� =� input('Try� again:\n');�

� � � � end�

� � � � disp('Processing...')�

end�

save� C:\matlabR12\work\flagQ� flagQ�

%---------------------------MARKED� IMAGE� IN� UINT8----------------------------�

flag8� =� input('For� marked� image� in� uint8� press� 1;� otherwise� press� 0;\n');�

while� (flag8� ~=� 0)&(flag8� ~=� 1)�

� � � � flag8� =� input('Your� choice� should� be� either� 0� or� 1;� Try� again:\n');�

end�

disp('Processing...')�

save� C:\matlabR12\work\flag8� flag8�

%--� IF� MARKED� IMAGE� REAL� -->� NORMALIZATION� �

if� flag8� ==� 0�

� � � � flagNorm� =� input('For� normalization� press� 1;� otherwise� press� 0;\n');�

� � � � while� (flagNorm� ~=� 0)&(flagNorm� ~=� 1)�

� � � � � � � � flagNorm� =� input('Your� choice� should� be� either� 0� or� 1;� Try� again:\n');�

� � � � end�

� � � � disp('Processing...')�

� � � � save� C:\matlabR12\work\flagNorm� flagNorm�

end�

%**�

%************************PROCESSING� SECTION**********************************�

%-------------------------DCT� OF� THE� IMAGE-----------------------------------�

Id� =� double(I);� %� It� is� assumed� that� the� image� from� is� in� uint8� form� [0� 255]�

T� =� dctmtx(8);�

dctI� =� blkproc(Id,[8� 8],'P1*x*P2',T,T');�

save� C:\matlabR12\work\dctI� dctI�

%-----------------------DCT� OF� THE� WATERMARK---------------------------------�

Wd� =� double(W);�

dctW� =� blkproc(Wd,[8� 8],'P1*x*P2',T,T');� �

save� C:\matlabR12\work\dctW� dctW�

81

clear� Wd�

%----------------------------EMBEDDING---------------------------------------�

dctI� =� embed8(dctI,dctW,alpha,start,length);�

clear� dctW� �

%-----------------IDCT� OF� MARKED� IMAGE� COEFFICIENTS--------------------------�

Im� =� blkproc(dctI,[8� 8],'P1*x*P2',T',T);� %� scrambled� marked� image�

clear� dctI�

%---------------------------UINT8� -� SNR--------------------------------------�

if� flag8� ==� 1�

� � � � Im� =� uint8(Im);� %� Im� is� the� marked� image� in� uint8�

� � � � SNR8� =� SNR(Id,double(Im));�

� � � � fprintf(1,'SNR� of� uint8� image,� SNR8(dB)=%1.4f\n',SNR8);�

else�

%--------------------------NORMALIZATION� -� SNR-------------------------------�

� � � � SNRr� =� SNR(Id,Im);�

� � � � fprintf(1,'SNR� of� real� image,� SNRr(dB)=%1.4f\n',SNRr);�

� � � � Im� =� Im/255;� %� reduce� Image� to� range� [0� 1]� plus� some� distortion� caused� from�
the� embedding�

� � � � if� flagNorm� ==� 1�

� � � � � � � � n� =� 3.5;� � %� selected� optimal� value�

� � � � � � � � save� C:\matlabR12\work\n� n�

� � � � � � � � Im� =� 1/pi*atan(n*(Im-1/2))+1/2;� %� normalization�

� � � � � � � � SNRnorm� =� SNR(I,(255*Im));�

� � � � � � � � fprintf(1,'SNR� of� real,� normalized� image,�
SNRnorm(dB)=%1.4f\n',SNRnorm);�

� � � � end�

end�

save� C:\matlabR12\work\Im� Im�

%--------------------------QUANTIZATION--------------------------------------�

if� flagQ� ==� 1�

� � � � if� flag8� ==� 0�

� � � � � � � � Im� =� 255*double(Im);� %� we� multiply� by� 255� to� return� to� the� correct�
scale�

� � � � end�

� � � � Imq� =� qFunc(Im,q_jpeg);�

� � � � if� flag8� ==� 0�

� � � � � � � � SNRrmq� =� SNR(Id,Imq);�

� � � � � � � � fprintf(1,'SNR� of� real,� marked� and� quantized� image,�
SNRrmq(dB)=%1.4f\n',SNRrmq);�

� � � � � � � � Imq� =� Imq/255;�

� � � � else�

82

� � � � � � � � Imq� =� uint8(Imq);�

� � � � � � � � SNR8mq� =� SNR(Id,double(Imq));�

� � � � � � � � fprintf(1,'SNR� of� uint8,� marked� and� quantized� image,�
SNR8mq(dB)=%1.4f\n',SNR8mq);�

� � � � end�

� � � � save� C:\matlabR12\work\Imq� Imq�

end�

clear� Id�

%**�

%************************DISPLAY� SECTION*************************************�

figure(1)�

imshow(I)�

title('Original� Image')�

�

%� figure(2)�

%� imagesc(W,[0� 255]),� colormap(gray),�

%� title('Watermark')�

�

figure(3)�

imshow(Im)�

title('Marked� Image')�

�

%� figure(4)�

%� imshow(Im-double(I)/255)�

%� title('Difference� between� Marked� &� Original')�

if� flagQ� ==� 1�

� � � � imhist(Imq,64)�

end�

�

if� flagQ� ==� 1�

� � � � � figure�

� � � � � imshow(Imq)�

� � � � � title('Quantized� Marked� Image')�

end�

�

�

�

�

�

�

83

%**�

%**�

%� Ioannis� Retsas�

%� Aug� 12,� 2001�

%� LAST� MODIFICATION:� February� 12,� 2002�

%� FILE� NAME:� Decoder�

%� DESCRIPTION:� This� file� recovers� the� Watermark� from� a� marked� Image�

%**�

%*******************************DATA� LOADING*********************************�

clear� all�

�

�

load� C:\matlabR12\work\indexGr�

load� C:\matlabR12\work\index�

load� C:\matlabR12\work\alpha�

load� C:\matlabR12\work\start�

load� C:\matlabR12\work\length�

load� C:\matlabR12\work\flagCrop�

load� C:\matlabR12\work\flagQ�

if� flagQ� ==� 1�

� � � � select� =� input('Press� 0� to� process� the� marked� image;� press� 1� to� process� the�
quantized,� marked� image\n');�

� � � � while� (select� ~=� 0)&(select� ~=� 1)�

� � � � � � � � select� =� input('Your� choice� should� be� either� 0� or� 1;� Try� again:\n');�

� � � � end�

end�

disp('Processing...')�

load� C:\matlabR12\work\flag8�

if� flag8� ==� 0�

� � � � load� C:\matlabR12\work\flagNorm�

end�

load� C:\matlabR12\work\I�

load� C:\matlabR12\work\W� �

%� load� C:\matlabR12\work\Key�

[Mw,Nw]� =� size(W);�

if� flagQ� ==� 1�

� � � � if� select� ==� 0�

� � � � � � � � load� C:\matlabR12\work\Im�

� � � � � � � � Itest� =� Im;�

� � � � � � � � clear� Im�

84

� � � � elseif� select� ==� 1�

� � � � � � � � load� C:\matlabR12\work\Imq�

� � � � � � � � Itest� =� Imq;�

� � � � � � � � clear� Imq�

� � � � end�

else�

� � � � load� C:\matlabR12\work\Im�

� � � � Itest� =� Im;�

� � � � clear� Im�

end�

Itest� =� double(Itest);�

%**�

%********************************CROPPING************************************�

if� flagCrop� ==� 1�

� � � � load� C:\matlabR12\work\cropParam�

� � � � if� flag8� ==� 0�

� � � � � � � � I1� =� 0.5*ones(size(Itest,1),size(Itest,2));�

� � � � else�

� � � � � � � � I1� =� 128*ones(size(Itest,1),size(Itest,2));�

� � � � end�

� � � � I1(cropParam(3):cropParam(4),cropParam(1):cropParam(2))� =...�

� � � � � � � � Itest(cropParam(3):cropParam(4),cropParam(1):cropParam(2));�

� � � � title_array� =� strcat('Cropped� Marked� Image� (alpha=',� num2str(alpha),� ')')�

� � � � if� flag8� ==� 0�

� � � � � � � � figure(5),� imshow(I1),� title(title_array)�

� � � � else�

� � � � � � � � figure(5),� imshow(uint8(I1)),� title(title_array)�

� � � � end�

� � � � Itest� =I1;�

� � � � clear� I1�

� end�

� [M,N]� =� size(Itest);� %� final� dimensions� after� cropping�

%**�

%********************************PROCESSING**********************************�

%-------------------------------DENORMALIZING--------------------------------�

if� flag8� ==� 0� �

� � � � if� flagNorm� ==� 1�

� � � � � � � � load� C:\matlabR12\work\n� � � �

� � � � � � � � Itest� =� 1/2� +� tan(pi*(Itest-1/2))/n;�

� � � � end�

85

� � � � Itest� =� 255*Itest;� %� bring� to� range� [0,255]�

end�

%--------------------------ORIGINAL� IMAGE� DCT--------------------------------�

load� C:\matlabR12\work\dctI�

%----------------------------TEST� IMAGE� DCT----------------------------------�

T� =� dctmtx(8);�

dctItest� =� blkproc(Itest,[8� 8],'P1*x*P2',T,T');� �

clear� Itest�

%------------------------RECOVERED� WATERMARK� DCT� (EXTRACTED)-----------------�

dctWr� =� extract8(dctI,dctItest,Mw,Nw,index,indexGr,alpha,start,length);�

clear� dctI�

clear� dctItest�

%----------------IDCT� ON� RECOVERED� WATERMARK� COEFFICIENTS--------------------�

Wr� =� blkproc(dctWr,[8� 8],'P1*x*P2',T',T);� %recovered� watermark�

Wr� =� uint8(round(Wr));�

clear� dctWr�

%---------------------------------BER--�

ber� =� BER(W,Wr);�

fprintf(1,'BER(bits� per� pixel)=%1.4f\n',ber);�

bermod� =� BERmod(W,Wr);�

fprintf(1,'BERmod(bits� per� pixel� with� error)=%1.4f\n',bermod);�

%---------------------------------rho--�

rho� =� corCoef(W,Wr);�

fprintf(1,'rho=%1.4f\n',rho);�

%---------------------------------XCORR--------------------------------------�

%� R� =� xcorr2(double(W),double(Wr));�

%� max_R� =� max(max(R));�

%� R� =� R/max_R;�

%**�

%********************************DISPLAY*************************************�

%� if� select� ==� 0�

%� � � � � title_array� =� strcat('Wm� recovered� from� marked� Image� (alpha=',�
num2str(alpha),� ')');�

%� elseif� select� ==� 1�

%� � � � � title_array� =� strcat('Wm� recovered� from� quantized� Image� (alpha=',�
num2str(alpha),� ')');� � � � �

%� end�

�

figure(11)� �

imagesc(Wr,[0� 255]),� colormap(gray),� title('Recovered�
Watermark')%title(title_array)�

86

�

%� figure(12)�

%� title_array� =� strcat('Xcor� between� W,Wr� (a=',� num2str(a),� ')');�

%� mesh(R);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

87

function� [I]� =� imageSelectionC�

�

%**�

%� Ioannis� Retsas�

%� August,� 2001�

%� LAST� MODIFICATION:� February� 4,� 2002�

%� FUNCTION:� imageSelectionC�

%� INPUT:� -�

%� DESCRIPTION:� A� routine� that� allows� the� user� to� select� an� image� from� the� �

%� gallery.�

%� RETURNS:� The� image� to� be� processed� in� grayscale� uint8� form.�

%� NOTE:1.� "fishingboat"� and� "pentagon"� are� already� grayscale� (no� need� for�
rgb2gray)�

%� � � � � � 2.� All� the� artificial� images� are� saved� in� the� corresponding� files�
(imageB,� �

%� � � � � � � � � imageSB,� imageR,� imageU)� with� he� same� variable� name� "image".�

%� � � � � � 3.� The� images� must� have� dimensions� that� are� multiple� of� 8� to� be�
processed�

%� � � � � � � � � by� the� framework;� therefore� "arctichare"� and� "newyork"� are�
accordingly� �

%� � � � � � � � � modified.�

%**�

�

disp('Select� image� from� gallery;� Use...')�

fprintf(1,'1� for� Lena;\n2� for� peppers;\n3� for� fishing� boat;\n');�

fprintf(1,'4� for� arctic� hare;\n5� for� New� York;\n6� for� pentagon;\n');�

fprintf(1,'7� for� imageB� (blocks);\n8� for� imageSB� (small� blocks);\n9� for� imageR�
(random);\n');�

file� =� input('10� for� imageU� (uniform);\n');�

disp('Processing� Data...')�

�

if� file� ==� 1�

� � � � I� =� imread('lena7','bmp');�

� � � � I� =� rgb2gray(I);�

elseif� file� ==� 2�

� � � � I� =� imread('peppers','bmp');�

� � � � I� =� rgb2gray(I);�

elseif� file� ==� 3�

� � � � I� =� imread('fishingboat','bmp');�

elseif� file� ==� 4�

� � � � I� =� imread('arctichare','bmp');�

� � � � I� =� rgb2gray(I);�

88

� � � � I� =� I(:,1:592);�

elseif� file� ==� 5�

� � � � I� =� imread('newyork','bmp');�

� � � � I� =� rgb2gray(I);�

� � � � I� =� I(1:512,1:512);�

elseif� file� ==� 6�

� � � � I� =� imread('pentagon','bmp');�

elseif� file� ==� 7�

� � � � load� C:\NINI\Thesis\Images\imageB�

� � � � I� =� image;�

elseif� file� ==� 8�

� � � � load� C:\NINI\Thesis\Images\imageSB�

� � � � I� =� image;�

elseif� file� ==� 9�

� � � � load� C:\NINI\Thesis\Images\imageR�

� � � � I� =� image;�

elseif� file� ==� 10�

� � � � load� C:\NINI\Thesis\Images\imageB�

� � � � I� =� image;�

end�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

89

function� [Ws,� Key]� =� keyingC(W)�

�

%**�

%� Ioannis� Retsas�

%� Aug� 31,� 2001�

%� LAST� MODIFICATION:February� 14,� 2002�

%� FUNCTION:� keyingC�

%� INPUT:� A� matrix� W� of� class� uint8.�

%� DESCRIPTION:� ...�

%� RETURNS:� The� keyed� matrix� Wk� (uint8),� and� the� Key� used.�

%**�

[Mw,Nw]� =� size(W);�

%� W� =� uint8(round(W));� %� if� you� include� this� you� get� an� error� if� the� input� is�
uint8�

Key� =� uint8(round(rand(Mw,Nw,8)));�

Wp� =� bitPlanes(W,8);� %� the� watermark� decomposed� into� planes�

for� k� =� 1:8�

� � � � Wk(:,:,k)� =� xor(Key(:,:,k),Wp(:,:,k));� %� each� plane� is� now� coded� with� the�
Key�

end�

Wk� =� ibitPlanes(Wk);� %� the� keyed� watermark� is� reassembled� �

�

Wk� =� uint8(Wk);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

90

function� [W]� =� WmTypeC(Mw,Nw)�

�

%**�

%� Ioannis� Retsas�

%� Aug,� 2001�

%� LAST� MODIFICATION:� February� 4,� 2002�

%� FUNCTION:� WmTypeC�

%� INPUT:� The� dimensions� Mw,Nw,� of� the� watermark.�

%� DESCRIPTION:� A� function� that� accepts� the� watermark's� dimensions,� takes� you� �

%� through� a� watermark� selection� process,� and...�

%� RETURNS:� A� grayscale� watermark� W.�

%� NOTE:� If� the� NPS� logo� is� selected,� the� size� is� by� default� 64x64� (not�
adjustable)�

%� and� the� input� values� are� ignored.�

%**�

�

fprintf('Select� one� of� the� watermarks.� Use:\n')�

selection� =� input('1� stripes;\n2� for� NPS� logo;\n3� for� random� grayscale�
watermark\n');�

while� (selection� ~=� 1)&(selection� ~=� 2)&(selection� ~=� 3)�

� � � � selection� =� input('Your� choise� should� be� one� of� 1,2� or� 3;� Try� again:\n');�

end�

disp('Processing� Data...')�

if� selection� ==� 1�

� � � � W� =� stripes(Mw,Nw);�

elseif� selection� ==� 2�

� � � � W� =� NPS;�

elseif� selection� ==� 3�

� � � � W� =� randWm(Mw,Nw);�

end�

�

�

�

�

�

�

�

�

�

�

�

91

function� [dctIo]� =� embed8(dctI,dctW,alpha,start,length)�

�

%**�

%� Ioannis� Retsas�

%� Nov� 15,� 2001�

%� LAST� MODIFICATION:-�

%� FUNCTION:� embed8�

%� INPUT:� The� matrix� dctI� which� will� be� marked,� the� matrix� dctW� which� will�

%� mark� dctI,� the� weighing� factor� alpha,� the� coefficient� in� each� 8x8� block� �

%� where� the� embedding� starts,� the� number� of� coefficients� that� are� embedded�

%� in� each� 8x8� block.�

%� DESCRIPTION:� For� each� 8x8� block� we� calculate� the� CIPF� (depending� on� each� �

%� distance� from� the� CI).� The� dctI� is� reshaped� to� 8x8x(M*N/64)� (we� sweep� dctI� �

%� left� to� right� and� top� to� bottom).� For� each� block� we� calculate� its� CF� &� the� PC� �

%� (=� E*RIPF)� �

%� and� we� sort� the� blocks� according� to� descending� PCs.� The� watermark�
coefficients� �

%� are� sorted� by� magnitude� and� divided� into� [length]� number� of� groups.� The� �

%� elements� of� each� group� with� the� same� index� ([length]� in� total)� form� a� set� of� �

%� embedding� coefficients.� Now� each� set� is� embedded� into� each� 8x8� block� starting� �

%� from� the� [start]th� coefficient.� Finally� we� reshape� the� marked� matrix� to� its� �

%� original� dimensions.�

%� RETURNS:� A� matrix� dctIo� with� the� marked� coefficients.�

%� CAUTION:It� is� required� that� [length]� divides� exactly� (Mw*Nw)� and� that�
(Mw*Nw/length)�

%� is� equal� or� smaller� than� the� number� of� 8x8� image� blocks.�

%**�

[M,N]� =� size(dctI);�

[Mw,Nw]� =� size(dctW);�

�

%� we� mark� each� 8x8� block� with� its� Eucledean� distance� from� the� center�

%� r(x,y)� is� the� distance� of� the� center� of� block� (x,y)� from� the� center� of� the�
image�

for� m=1:8:M�

� � � � for� n=1:8:N�

� � � � � � � � r(fix(m/8)+1,fix(n/8)+1)� =� (((m+3)-M/2)^2� +� ((n+3)-N/2)^2)^(1/2);�

� � � � end�

end�

�

%� reshaping� the� matrix� from� MxN� to� 8x8x(M*N/64)�

92

%� with� this� technique� we� sweep� the� matrix� row-wise� (left� to� right� -� top� to�
bottom)�

k� =� 1;�

for� i� =� 1:8:M�

� � � � B(:,:,k:k+N/8-1)� =� reshape(dctI(i:i+7,:),8,8,N/8);� %� B� is� 8x8x4!!!�

� � � � k� =� k+N/8;�

end�

�

%� we� similarly� (row-wise)� reshape� the� matrix� r� with� the� distances� �

r_line� =� reshape(r',size(r,1)*size(r,2),1);�

�

%� we� calculate� for� each� block� the� CIPF� (Center� of� Interest� Proximity� Factor)�

rmax� =� max(max(r));�

CIPF� =� � -1/pi*atan(15*(r/rmax-2/3))+1/2;�

�

weight� =� [];� %� this� is� the� vector� that� will� accomodate� the� different� weight�
that� is� used� for� each� coefficient�

for� i� =� 1:63�

� � � � weight� =� [weight� i];�

end�

�

%� F(i)� is� the� CF� calculated� for� each� block� i�

for� i� =� 1:size(B,3)�

� � � � B2� =� B(:,:,i);�

� � � � V� =� zigzag(abs(B2));�

� � � � F(i)� =� weight*V(2:64)';�

� � � � %� for� each� block� we� determine� a� Priority� Coefficient� PC� which� is� the� CF� �

� � � � %� weighted� by� the� CIPF�

� � � � PC(i)� =� F(i)*CIPF(i);� �

end� �

PC� =� PC/max(F);� %� normalization�

� �

[varB(size(B,3):-1:1),� index(size(B,3):-1:1)]� =� sort(PC);�

B(:,:,:)� =� B(:,:,index);� %� B� contains� the� 8x8� blocks� sorted� by� descending� order�
of� PC�

save� C:\matlabR12\work\index� index�

�

%� sorting� of� the� dct� coefficients� of� the� watermark� by� descending� order� of�
magitude�

[x,� index2(Mw*Nw:-1:1)]� =� sort(abs(dctW(:)));�

dctW� =� dctW(index2);� %� this� way� we� avoid� changing� the� values� to� positive� after�
sorting� by� var�

93

�

%� group� the� dct� coefficients� of� the� watermark� in� [length]� groups�

for� i� =� 1:length�

� � � � gr(:,i)� =� dctW((i-1)*Mw*Nw/length+1:i*Mw*Nw/length)';�

� � � � indexGr(:,i)� =� index2((i-1)*Mw*Nw/length+1:i*Mw*Nw/length)';�

end�

save� C:\matlabR12\work\indexGr� indexGr�

%� embedding�

for� i� =� 1:size(gr,1)�

� � � � V� =� zigzag(B(:,:,i));� %� V� is� a� row� vector� that� contains� the� elements� of� an�
8x8� block� aligned� in� zz� fashion.�

� � � � V(start:start+length-1)� =� V(start:start+length-1)� +� alpha*gr(i,:);�

� � � � B(:,:,i)� =� zzRvs(V);�

end�

�

B(:,:,index)� =� B(:,:,:);� %� desorting� the� 8x8� dct� blocks� of� the� image� to� get�
their� original� order� � �

k� =� 1;�

for� i� =� 1:8:M�

� � � � dctIo(i:i+7,:)� =� reshape(B(:,:,k:k+N/8-1),8,N);� %� contains� the� marked� dct�
coefs� of� the� image� �

� � � � k� =� k+N/8;� �

end�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

94

function� dctWr=extract8(dctI,dctIm,Mw,Nw,index,indexGr,alpha,start,length)�

�

%**�

%� Ioannis� Retsas�

%� Sep� 19,� 2001�

%� LAST� MODIFICATION:Nov� 15,� 2001�

%� FUNCTION:� extract8�

%� INPUT:� The� matrix� dctI,� the� marked� matrix� dctIm,� the� watermark� dimensions� Mw,� �

%� Nw,� the� vectors� index� and� indexGr� from� embed8,� alpha,� start� and� length.�

%� DESCRIPTION:� We� calculate� the� difference� between� the� two� input� matrices.�

%� The� dctDif� is� reshaped� to� 8x8xXXXX.� The� start� to� start+length-1� coeffs� are�
selected� and� �

%� are� put� back� together� to� make� up� the� watermark.�

%� RETURNS:� The� dct� coeffs� of� the� retrieved� watermark.�

%**�

[M,N]� =� size(dctI);�

dctDif� =� dctIm� -� dctI;�

k� =� 1;�

for� i� =� 1:8:M� %� reshape�

� � � � B(:,:,k:k+N/8-1)� =� reshape(dctDif(i:i+7,:),8,8,N/8);� %� B� is� 8x8x4!!!�

� � � � k� =� k+N/8;�

end�

B� =� B(:,:,index);� %� sorting� using� index� (:,:,:)�

embeddingSetsNumber� =� Mw*Nw/length;�

for� i� =� 1� :� embeddingSetsNumber�

� � � � V� =� zigzag(B(:,:,i));� %� V� is� a� row� vector� that� contains� the� elements� of� an�
8x8� block� aligned� in� zz� fashion.�

� � � � dctWr(i,:)� =� V(start:start+length-1)/alpha;�

� � � � B(:,:,i)� =� zzRvs(V);�

end�

�

�

%� k� =� 1;� %� counts� the� number� of� blocks� that� are� being� embedded.�

%� q� =� 1;� %� counts� the� 4� coefficients� that� are� embedded� in� each� block.�

%� for� i� =� 1� :� Mw*Nw�

%� � � � � V� =� zigzag(B(:,:,k));� %� V� is� a� row� vector� that� contains� an� 8x8� block�
aligned� in� zz� fashion.�

%� � � � � dctWr(i)� =� V(6+q)/alpha;� %� embedding� on� the� 7th,8th,9th� and� 10th�
coefficients.�

%� � � � � q� =� q+1;�

%� � � � � if� q� ==� 5�

95

%� � � � � � � � � q� =� 1;�

%� � � � � � � � � k� =� k+1;�

%� � � � � end�

%� end� �

�

dctWr(indexGr(:))� =� dctWr(:);� %� desorting� the� dctW� coefficients� using� indexNew�

dctWr� =� reshape(dctWr,Mw,Nw);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

96

�

function� [Iq]� =� qFunc(I,q_jpeg)�

�

%**�

%� Ioannis� Retsas�

%� February� 11,� 2002�

%� LAST� MODIFICATION:-�

%� FUNCTION:� qFunc�

%� INPUT:� An� image� in� the� range� [0� 255],� and� a� quality� factor� [1� 100].�

%� DESCRIPTION:� Performs� 8x8� block� quantization� on� I,� using� the� standard� JPEG�

%� luminance� quantization� table.�

%� RETURNS:� The� quantized� image� Iq� (double� [0� 255]� -� may� need� to� be� �

%� transformed� to� uint8� 8in� order� to� be� displayed).�

%**�

I� =� double(I);�

T� =� dctmtx(8);�

dctI� =� blkproc(I,[8� 8],'P1*x*P2',T,T');� �

Q� =� stdJPEGQ;�

if� q_jpeg� <=� 50�

� � � � q� =� 50/q_jpeg;�

� � � � Q� =� q*Q;�

elseif� (50� <� q_jpeg)� &� � (q_jpeg� <=� 99)�

� � � � q� =� 2-(2*q_jpeg)/100;�

� � � � Q� =� q*Q;�

else�

� � � � Q� =� ones(8);�

end�

dctI� =� blkproc(dctI,[8� 8],'x./P1',Q);� %� as� above� (using� of� one� of� the� Q� tables)�

dctI� =� round(dctI);�

dctI� =� blkproc(dctI,[8� 8],'x.*P1',Q);�

Iq� =� blkproc(dctI,[8� 8],'P1*x*P2',T',T);� %� image� after� quantization� process�

�

�

�

�

�

�

�

�

�

97

�

function� [dctI]� =� quantFunc(dctI)�

�

%**�

%� Ioannis� Retsas�

%� Aug,� 2001�

%� LAST� MODIFICATION:� Oct� 10,� 2001�

%� FUNCTION:� quantFunc�

%� INPUT:� A� matrix� dctI� (of� DCT� coefficients).�

%� DESCRIPTION:� Performs� 8x8� block� quantization� on� matrix� M,� using� one� of� the� �

%� offered� quantization� matrices.�

%� RETURNS:� The� quantized� matrix� dctI� (the� quantized� DCT� coefficients).�

%**�

�

fprintf('Select� Quantization� table;� Press...\n');�

QSelection� =� input('1� for� binary� table;\n2� for� default� JPEG� table;\n3� for� Image�
Alchemy,� Handmade� Software� Inc.� table;\n');�

while� (QSelection� ~=� 1)&(QSelection� ~=� 2)&(QSelection� ~=� 3)�

� � � � QSelection� =� input('Your� choise� should� be� one� of� 1,2� or� 3;� Try� again:\n');�

end�

�

if� QSelection� ==� 1�

� � � � comprRatio� =� input('Enter� the� compression� ratio� (x/64)� for� the� DCT:\n');�

� � � � Q� =� binaryQ(comprRatio);� %� we� assign� to� Q� the� values� of� a� Quantization�
table�

elseif� QSelection� ==� 2�

� � � � Q� =� stdJPEGQ;�

elseif� QSelection� ==� 3�

� � � � Q� =� IAHSIncQ;�

end�

if� (QSelection� ==� 2)� |� (QSelection� ==� 3)�

� � � � q_jpeg� =� input('Type� the� value� of� the� compression� factor� q_jpeg\n(default�
value(%):� 50):\n');�

� � � � while� (q_jpeg� <� 1)� |� (q_jpeg� >� 100)� �

� � � � � � � � q_jpeg� =� input('Your� choise� should� be� an� integer� in� the� range� [1,� 100];�
Try� again:\n');�

� � � � end�

� � � � if� q_jpeg� <=� 50�

� � � � � � � � q� =� 50/q_jpeg;�

� � � � � � � � Q� =� q*Q;�

� � � � elseif� (50� <� q_jpeg)� &� � (q_jpeg� <=� 99)�

98

� � � � � � � � q� =� 2-(2*q_jpeg)/100;�

� � � � � � � � Q� =� q*Q;�

� � � � else�

� � � � � � � � Q� =� ones(8);�

� � � � end�

end�

disp('Processing� Data...')� � � � �

if� QSelection� ==� 1�

� � � � dctI� =� blkproc(dctI,[8� 8],'P1.*x',Q);� %� dctI=dctImq,� are� the� quantized�
coefs.� �

else�

� � � � dctI� =� blkproc(dctI,[8� 8],'x./P1',Q);� %� as� above� (using� of� one� of� the� Q�
tables)�

� � � � dctI� =� round(dctI);�

� � � � dctI� =� blkproc(dctI,[8� 8],'x.*P1',Q);�

end�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

99

�

function� [q]� =� stdJPEGQ�

�

%**�

%� Ioannis� Retsas�

%� Aug,� 2001�

%� FUNCTION:� stdJPEGQ�

%� INPUT:� -�

%� DESCRIPTION:� -� �

%� RETURNS:� The� default� JPEG� quantization� table.�

%**�

�

q� =� [16� � 11� � 10� � 16� � 24� � 40� � 51� � 61;�

� � � � � 12� � 12� � 14� � 19� � 26� � 58� � 60� � 55;�

� � � � � 14� � 13� � 16� � 24� � 40� � 57� � 69� � 56;�

� � � � � 14� � 17� � 22� � 29� � 51� � 87� � 80� � 62;�

� � � � � 18� � 22� � 37� � 56� � 68� 109� 103� � 77;�

� � � � � 24� � 35� � 55� � 64� � 81� 104� 113� � 92;�

� � � � � 49� � 64� � 78� � 87� 103� 121� 120� 101;�

72� 92� � 95� � 98� 112� 100� 103� � 99];�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

100

�

function� [R]� =� BER(W,� Wr)�

�

%**�

%� Ioannis� Retsas�

%� Nov� 14,� 2001�

%� LAST� MODIFICATION:-�

%� FUNCTION:� BER�

%� INPUT:� Two� equally� sized� matrices� W,� Wr� (uint8).�

%� DESCRIPTION:� Calculates� the� Bit� Error� Rate� (in� error� bits� per� pixel).�

%� RETURNS:� The� Bit� Error� Rate,� R.�

%**�

�

[Mw,Nw]� =� size(W);�

[Mwr,Nwr]� =� size(Wr);�

if� (Mw� ~=� Mwr)� |� (Nw� ~=� Nwr)�

� � � � display('The� two� iputs� do� not� have� the� same� size;� rho� will� not� be�
calculated')�

� � � � return�

end�

Wb=bitPlanes(W,8);�

Wrb=bitPlanes(Wr,8);�

sum=0;�

for� i=1:Mw�

� � � � for� j=1:Nw�

� � � � � � � � for� k=1:8�

� � � � � � � � � � � � if� Wb(i,j,k)� ~=� Wrb(i,j,k)�

� � � � � � � � � � � � � � � � sum� =� sum+1;�

� � � � � � � � � � � � end�

� � � � � � � � end�

� � � � end�

end�

R� =� sum/(Mw*Nw);�

�

�

�

�

�

�

�

101

�

function� [R]� =� BERmod(W,� Wr)�

�

%**�

%� Ioannis� Retsas�

%� Nov� 14,� 2001�

%� LAST� MODIFICATION:-�

%� FUNCTION:� BERmod�

%� INPUT:� Two� equally� sized� matrices� W,� Wr� (uint8).�

%� DESCRIPTION:� Calculates� the� Bit� Error� Rate� (in� error� bits� per� pixel� of�
error).�

%� RETURNS:� The� Bit� Error� Rate,� R.�

%**�

�

[Mw,Nw]� =� size(W);�

[Mwr,Nwr]� =� size(Wr);�

if� (Mw� ~=� Mwr)� |� (Nw� ~=� Nwr)�

� � � � display('The� two� iputs� do� not� have� the� same� size;� rho� will� not� be�
calculated')�

� � � � return�

end�

Wb=bitPlanes(W,8);�

Wrb=bitPlanes(Wr,8);�

sum� =� 0;� sum1� =� 0;� %� counters�

for� i=1:Mw�

� � � � for� j=1:Nw�

� � � � � � � � flag� =� 0;� %� the� flag� is� set� to� 0� for� each� new� pixel�

� � � � � � � � for� k=1:8�

� � � � � � � � � � � � if� Wb(i,j,k)� ~=� Wrb(i,j,k)�

� � � � � � � � � � � � � � � � flag� =� 1;� %� the� flag� is� set� to� 1� when� an� error� occurs� in� a�
pixel�

� � � � � � � � � � � � � � � � sum� =� sum+1;�

� � � � � � � � � � � � end�

� � � � � � � � end�

� � � � � � � � if� flag� ==� 1�

� � � � � � � � � � � � sum1� =� sum1+1;�

� � � � � � � � end�

� � � � end�

end�

R� =� sum/sum1;�

�

102

�

function� [Ip]� =� bitPlanes(I,type)�

�

%**�

%� Ioannis� Retsas�

%� Aug� 17,� 2001�

%� LAST� MODIFICATION:� Sep� 5,� 2001�

%� FUNCTION:� bitPlanes�

%� INPUT:� A� grayscale� Image,� the� data� type� (8� for� uint8,� 16� for� uint16...)�

%� DESCRIPTION:� Receives� a� grayscale� -uint8-� image� as� an� input.� For� each� pixel� �

%� of� the� image� gets� the� binary� representation� of� its� value.� Creates� a� set� of� � � �

%� binary� image� planes,� each� containing� one� bit� per� pixel.� Each� plane� contains� � �

%� bits� of� the� same� significance.�

%� RETURNS:� A� binary� matrix� where� the� first� two� dimensions� are� the� actual� �

%� dimensions� of� the� input� image,� while� the� third� dimension� represents� the� �

%� different� planes,� each� containing� equally� significant� bits� of� the� binary� �

%� representation� of� the� value� of� each� pixel.� Plane� 1� (k=1)� contains� the� most� �

%� significant� bits.�

%**�

�

[M,N]� =� size(I);�

%� I� =� uint8(round(I));� %� PROSOXH�

for� i� =� 1:M�

� � � � for� j� =� 1:N�

� � � � � � � � for� k� =� type:-1:1�

� � � � � � � � � � � � Ip(i,j,type+1-k)� =� bitget(I(i,j),k);�

� � � � � � � � end�

� � � � end�

end�

�

�

�

�

�

�

�

�

�

�

�

103

�

function� [rho]� =� corCoef(W,� Wr)�

�

%**�

%� Ioannis� Retsas�

%� Nov� 14,� 2001�

%� LAST� MODIFICATION:-�

%� FUNCTION:� corCoef�

%� INPUT:� Two� equally� sized� matrices� W,� Wr.�

%� DESCRIPTION:� After� substracting� the� mean,� calculates� the� cross� correlation� �

%� of� the� two� matrices� for� the� instant� that� the� two� matrices� are� aligned.�

%� RETURNS:� rho� (the� cross� correlation� of� the� two� matrices� for� the� instant� �

%� that� the� two� matrices� are� aligned).�

%**�

�

[Mw,Nw]� =� size(W);�

[Mwr,Nwr]� =� size(Wr);�

if� (Mw� ~=� Mwr)� |� (Nw� ~=� Nwr)�

� � � � display('The� two� inputs� do� not� have� the� same� size;� The� program� is�
terminated')�

� � � � return�

end�

m_r� =� mean(mean(double(Wr)));�

m� =� mean(mean(double(W)));�

Wr� =� double(Wr)-m_r;�

W� =� double(W)-m;�

sum_x� =� 0;� sum� =� 0;� sum_r� =� 0;� %� counters�

for� i� =� 1:Mw�

� � � � for� j=1:Nw�

� � � � � � � � sum_x� =� sum_x� +� W(i,j)*Wr(i,j);�

� � � � � � � � sum� =� sum� +� W(i,j)^2;�

� � � � � � � � sum_r� =� sum_r� +� Wr(i,j)^2;�

� � � � end�

end�

rho� =� sum_x/(sum*sum_r)^(1/2);�

�

�

�

�

�

104

�

function� [I]� =� ibitPlanes(Ip)�

�

%**�

%� Ioannis� Retsas�

%� Aug� 17,� 2001�

%� LAST� MODIFICATION:� Sep� 4,� 2001�

%� FUNCTION:� ibitPlanes�

%� INPUT:� A� binary� matrix� where� the� first� two� dimensions� are� the� actual� �

%� dimensions� of� the� input� image,� while� the� third� dimension� represents� the� �

%� different� planes,� each� containing� equally� significant� bits� of� the� binary� �

%� representation� of� the� value� of� each� pixel.� Plane� 1� (k=1)� contains� the� most� �

%� significant� bits.�

%� DESCRIPTION:� Performs� the� reverse� process� of� bitPlanes� function.�

%� Receives� an� image� that� has� been� decomposed� into� binary� planes� of� equally�

%� significant� bits,� and� returns� the� original� image.�

%� RETURNS:� A� grayscale� Image.�

%**�

%� Ip� =� uint8(round(Ip));� %� PROSOXH�

[L,M,N]� =� size(Ip);�

�

for� i� =� 1:L�

� � � � for� j� =� 1:M�

� � � � � � � � C� =� Ip(i,j,1);�

� � � � � � � � for� k� =� 1:N-1�

� � � � � � � � � � � � C� =� bitshift(C,1);�

� � � � � � � � � � � � C� =� bitor(C,Ip(i,j,k+1));�

� � � � � � � � end�

� � � � � � � � I(i,j)� =� C;�

� � � � end�

end�

�

�

�

�

�

�

�

�

�

105

�

function� s=SNR(M,Md)�

%**�

%� Ioannis� Retsas�

%� Nov� 16,� 2001�

%� LAST� MODIFICATION:-�

%� FUNCTION:� SNR�

%� INPUT:� The� original� matrix� M,� and� the� distorted� matrix� Md,� expressed� in� a� �

%� [0� 255]� scale.�

%� DESCRIPTION:� We� calcuated� the� SNR� based� on� the� formula:�

%� SNR� =� 10log(sigma^2/mse),� where� mse� =� E[(x-xd)^2]� =� (1/MN)SUM� SUM� (x-xd)^2� �

%� is� the� mean� square� error,� as� presented� in� introduction� to� Data� Compression� by� �

%� Khalid� Sayood� (2nd� edition),� 2000.�

%� RETURNS:� The� SNR,� s.�

%**�

M� =� double(M);� Md� =� double(Md);�

mean_M� =� mean(mean(M));�

sigmaSquare� =� 0;� mse� =� 0;� �

%� calculation� of� sigma,� mse�

[K,L]� =� size(M);�

for� i� =� 1� :� K�

� � � � for� j� =� 1� :� L�

� � � � � � � � sigmaSquare� =� sigmaSquare� +� (M(i,j)-mean_M)^2;�

� � � � � � � � mse� =� mse� +� (M(i,j)� -� Md(i,j))^2;�

� � � � end�

end�

sigmaSquare� =� sigmaSquare/(K*L);�

mse� =� mse/(K*L);�

�

s� =� 10*log10(sigmaSquare/mse);� %�

�

�

�

�

�

�

�

�

�

�

106

�

function� [V]� =� zigzag(Mi)�

�

%**�

%� Ioannis� Retsas�

%� September� 12,� 2001�

%� LAST� MODIFIED:� -�

%� FUNCTION:� zigzag(Mi)�

%� INPUT:� An� input� matrix� Mi.�

%� DESCRIPTION:� -�

%� RETURNS:� A� row� vector� V� that� contains� the� elements� arranged� in� zigzag� �

%� fashion.�

%**�

A� =� [� 1� � 2� � 6� � 7� 15� 16� 28� 29;�

� � � � � � 3� � 5� � 8� 14� 17� 27� 30� 43;�

� � � � � � 4� � 9� 13� 18� 26� 31� 42� 44;�

� � � � � 10� 12� 19� 25� 32� 41� 45� 54;�

� � � � � 11� 20� 24� 33� 40� 46� 53� 55;�

� � � � � 21� 23� 34� 39� 47� 52� 56� 61;�

� � � � � 22� 35� 38� 48� 51� 57� 60� 62;�

� � � � � 36� 37� 49� 50� 58� 59� 63� 64];�

� �

� V(A(:))� =� Mi(:);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

107

function� [Mo]� =� zzRvs(V)�

�

%**�

%� Ioannis� Retsas�

%� September� 12,� 2001�

%� LAST� MODIFIED:� -�

%� FUNCTION:� zzRvs(Mi)�

%� INPUT:� An� input� vector� V.�

%� DESCRIPTION:� -�

%� RETURNS:� A� matrix� Mo� that� has� the� elements� of� V� arranged� in� a� zigzag� fashion.�

%**�

A� =� [� 1� � 2� � 6� � 7� 15� 16� 28� 29;�

� � � � � � 3� � 5� � 8� 14� 17� 27� 30� 43;�

� � � � � � 4� � 9� 13� 18� 26� 31� 42� 44;�

� � � � � 10� 12� 19� 25� 32� 41� 45� 54;�

� � � � � 11� 20� 24� 33� 40� 46� 53� 55;�

� � � � � 21� 23� 34� 39� 47� 52� 56� 61;�

� � � � � 22� 35� 38� 48� 51� 57� 60� 62;�

� � � � � 36� 37� 49� 50� 58� 59� 63� 64];�

� �

Mo� =� V(A(:));�

Mo� =� reshape(Mo,8,8);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

108

function� [W]� =� NPS�

�

%**�

%� Ioannis� Retsas�

%� Nov� 19,� 2001�

%� FUNCTION:� NPS�

%� INPUT:� -�

%� DESCRIPTION:� �

%� RETURNS:� Returns� a� gray� scale� watermark� W,� 64x64,� with� the� NPS� logo� � �

%� comprised� by� blocks� of� different� (random)� grayscale� level;�

%� REMARK:� Each� element� of� the� matrix� is� an� uint8.� Whether� it� will� be� color�

%� or� gray� depends� on� the� function� you� are� using.� �

%� imagesc()� gives� the� colored� representation,� while�

%� imagesc(),� colormap(gray)� gives� the� gray� scale� one.�

%**�

%� background�

W� =� round(255*rand(64,64));�

W(11:50,:)� =� 200*ones(40,64);�

%� N�

W(17:42,5:8)� =� round(255*rand(26,4));�

W(19:20,9)� =� round(255*rand(2,1));�

W(21:22,9:10)� =� round(255*rand(2,2));�

W(23:24,9:11)� =� round(255*rand(2,3));�

W(25:26,9:12)� =� round(255*rand(2,4));�

W(27:28,10:13)� =� round(255*rand(2,4));�

W(29:30,11:14)� =� round(255*rand(2,4));�

W(31:32,12:15)� =� round(255*rand(2,4));�

W(33:34,13:16)� =� round(255*rand(2,4));�

W(35:36,14:16)� =� round(255*rand(2,3));�

W(37:38,15:16)� =� round(255*rand(2,2));�

W(39:40,16)� =� round(255*rand(2,1));�

W(17:42,17:20)� =� round(255*rand(26,4));�

%� P�

W(17:42,25:28)� =� round(255*rand(26,4));�

W(17:20,29:32)� =� round(255*rand(4,4));�

W(18:21,33:34)� =� round(255*rand(4,2));�

W(20:23,35:36)� =� round(255*rand(4,2));�

W(22:26,37:38)� =� round(255*rand(5,2));�

W(25:28,35:36)� =� round(255*rand(4,2));�

W(27:30,33:34)� =� round(255*rand(4,2));�

109

W(28:31,29:32)� =� round(255*rand(4,4));�

%� S�

W(19:22,55:56)� =� round(255*rand(4,2));�

W(18:21,53:54)� =� round(255*rand(4,2));�

W(17:20,49:52)� =� round(255*rand(4,4));�

W(18:21,47:48)� =� round(255*rand(4,2));�

W(20:23,45:46)� =� round(255*rand(4,2));�

W(22:26,43:44)� =� round(255*rand(5,2));�

W(25:28,45:46)� =� round(255*rand(4,2));�

W(27:30,47:48)� =� round(255*rand(4,2));�

W(28:31,49:52)� =� round(255*rand(4,4));�

W(29:32,53:54)� =� round(255*rand(4,2));�

W(31:34,55:56)� =� round(255*rand(4,2));�

W(33:37,57:58)� =� round(255*rand(5,2));�

W(36:39,55:56)� =� round(255*rand(4,2));�

W(38:41,53:54)� =� round(255*rand(4,2));�

W(39:42,49:52)� =� round(255*rand(4,4));�

W(38:41,47:48)� =� round(255*rand(4,2));�

W(36:39,45:46)� =� round(255*rand(4,2));�

�

W� =� uint8(W);�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

110

function� [W]� =� randWm(M,N)�

�

%**�

%� Ioannis� Retsas�

%� Nov� 25,� 2001�

%� FUNCTION:� randWm�

%� INPUT:� The� dimensions� M,� N� of� the� watermark.�

%� DESCRIPTION:� �

%� RETURNS:� Returns� a� gray� scale� random� watermark� W� (MxN).�

%**�

W� =� uint8(round(255*rand(M,N)));�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

111

function� [W]� =� stripes(M,N)�

�

%**�

%� Ioannis� Retsas�

%� Aug,� 2001�

%� FUNCTION:� stripes�

%� INPUT:� The� dimensions� M,� N� of� the� watermark.�

%� DESCRIPTION:� �

%� RETURNS:� Returns� a� gray� scale� watermark� W;� 11� vertical� stripes� with� the� �

%� the� value� of� the� gray� scale� be� maximum� in� the� middle� stripe.�

%� REMARK:� Each� element� of� the� matrix� is� an� uint8.� Whether� it� will� be� color�

%� or� gray� depends� on� the� function� you� are� using.� �

%� imagesc()� gives� the� colored� representation,� wlile�

%� imagesc(),� colormap(gray)� gives� the� gray� scale� one.�

%**�

�

width� =� round(N/11);�

�

W(1:M,� 1:width)� =� 0� *� ones(M,width);�

W(1:M,� width+1� :� 2*width)� =� 50� *� ones(M,width);�

W(1:M,� 2*width+1� :� 3*width)� =� 100� *� ones(M,width);�

W(1:M,� 3*width+1� :� 4*width)� =� 150� *� ones(M,width);�

W(1:M,� 4*width+1� :� 5*width)� =� 200� *� ones(M,width);�

W(1:M,� 5*width+1� :� 6*width)� =� 250� *� ones(M,width);�

W(1:M,� 6*width+1� :� 7*width)� =� 225� *� ones(M,width);�

W(1:M,� 7*width+1� :� 8*width)� =� 175� *� ones(M,width);�

W(1:M,� 8*width+1� :� 9*width)� =� 125� *� ones(M,width);�

W(1:M,� 9*width+1� :� 10*width)� =� 75� *� ones(M,width);�

W(1:M,� 10*width+1� :� N)� =� 25� *� ones(M,� N-10*width);�

�

W� =� uint8(W);�

112

LIST OF REFERENCES

[1] F. A. P. Petitcolas, R. J. Anderson, M. G. Kuhn, "Information Hiding – A
Survey", Proceedings of the IEEE, vol.87, no.7, pp.1062-1078, July 1999.

[2] D. J. Ryan, "Infosec and Infowar, Considerations for Military Intelligence",
www.danjryan.com/MIntl.html.

[3] F. Hartung, M. Kutter, "Multimedia Watermarking Techniques", Proceedings
of the IEEE, vol.87, no.7, pp.1079-1107, July 1999.

[4] I. J. Cox, M. L. Miller, J. A. Bloom, "Digital Watermarking", Morgan
Kaufmann Publishers, 2002.

[5] C. P. Pfleeger, "Security in Computing", Prentice Hall PTR, 2nd edition, 2000.

[6] G. L. Friedman, "The Trustworthy Digital Camera: Restoring Credibility to
the Photographic Image", IEEE Transactions on Consumer Electronics, vol.39, pp.905-
910, October 1993.

[7] D. Kundur, D. Hatzinakos, “Digital Watermarking for Telltale Tamper
Proofing and Authentication”, Proceedings of the IEEE, vol.87, no.7, pp.1167-1180,
July 1999.

[8] C. I. Podilchuk, E. J. Delp, "Digital Watermarking: Algorithm and
Applications", IEEE Signal Processing Magazine, pp.33-46, July 2001.

[9] C. C. Langelaar, I. Setyawan, R. L. Lagendijk, "Watermarking Digital Image
and Video Data", IEEE Signal Processing Magazine, pp.20-46, September 2000.

[10] W. Bender, D. Gruhl, N. Morimoto, "Techniques for Data Hiding",
Proceedings SPIE, vol.2420, p.40, San Jose, CA, February 1995.

[11] N. Nikolaidis, I. Pitas, "Copyright Protection of Images using Robust Digital
Signatures", Proceedings ICASSP '96, Atlanta, GA, May 1996.

[12] C. Langelaar, J. C. A. van der Lubbe, R. L. Lagendijk, "Robust Labeling
Methods for Copy Protection of Images", Proceedings in Electronic Imaging, vol.3022,
pp.298-309, San Jose, CA, February 1997.

[13] M. Kutter, F. Jordan, F. Bossen, "Digital Signature of Color Images using
Amplitude Modulation", Proceedings in Electronic Imaging, San Jose, CA, February
1997.

[14] M. Barni, C. I. Podilchuk, F. Bartolini, E. J. Delp, "Watermark Embedding:
Hiding a Signal within a Cover Image", IEEE Communications Magazine, pp.102-108,
August 2001.

[15] M. Ramkumar, A. N. Akansu, A. A. Alatan, “On the Choice of Transforms
for Data Hiding in Compressed Video”, IEEE International Conference on Acoustics,
Speech, and Signal Processing 1999, Proceedings, Vol.6 , pp.3049-3052, 1999.

113

http://www.danjryan.com/MIntl.html

[16] S. Kang, Y. Aoki, “Digital Image Watermarking by Fresnel Transform and
its Robustness”, International Conference on Image Processing, Proceedings 1999 (ICIP
99), vol.2, pp.221-225.

[17] J. J. K. O Ruanaidh, W. J. Dowling, F. M. Boland, "Phase Watermarking of
Digital Images", Proceedings IEEE, International Conference of Image Processing,
vol.III, pp.239-242, Lausanne, Switzerland, September 16-19, 1996.

[18] A. Herrigel, H. Petersen, J. O Ruanaidh, T. Pun, P. Shelby, "Copyright
Techniques for Digital Images Based on Asymmetric Cryptographic Techniques",
presented at Workshop on Information Hiding, Portland, Oregon, USA, April 1998.

[19] A. Herrigel, J. J. K. O Ruanaidh, H. Petersen, S. Pereira, T. Pun, "Secure
Copyright Protection Techniques for Digital Images", in Information Hiding (Lecture
Notes in Computer Science, vol. 1525), D. Aucsmith, Ed. Berlin, Germany: Springer,
1998, pp.169-190.

[20] S. Pereira, J. J. K. O Ruanaidh, F. Deguillaume, G. Csurka, T. Pun,
"Template-based Recovery of Fourier-based Watermarks using Log-polar and Log-log
Maps", Proceedings IEEE in Multimedia Systems 99, International Conference in
Multimedia Computing and Systems, Florence, Italy, June 7-11, 1999.

[21] J. J. K. O Ruanaidh, F. M. Boland, O. Sinnen, "Watermarking Digital Images
for Copyright Protection", Proceedings in Electronic Imaging and the Visual Arts 1996,
Florence, Italy, February 1996.

[22] I. J. Cox, J. Kilian, F. T. Leighton, T. Shamoon, “Secure Spread Spectrum
Watermarking for Multimedia”, IEEE Transactions on Image Processing, vol.6, no.12,
pp.1673-1687, December 1997.

[23] C. I. Podilchuk, W. Zeng, “Image-adaptive Watermarking using Visual
Models”, IEEE Journal on Selected Areas in Communications, vol.16, no.4, pp.525-539,
May 1998.

[24] C. I. Podilchuk, W. Zeng, “Perceptual Watermarking of Still Images”, IEEE
First Workshop on Multimedia Signal Processing, pp.363-368, 1997.

[25] A. Piva, M. Barni, E. Bartolini, V. Cappellini, "A DCT-based Watermarking
Recovering without resorting to the Uncorrupted Digital Image", Proceedings IEEE,
International Conference in Image Processing, vol.1, p.520, Santa Barbara, CA, 1997.

[26] M. Barni, F. Bartolini, V. Cappellini, A. Lipi, A. Piva, "A DWT-based
Technique for Spatio-Frequency Masking of Digital Signatures", Proceedings SPIE/IS
International Conferencein Security and Watermarking of Multimedia Contents,
vol.3657, pp.31-39, San Jose, January 25-27, 1999.

[27] K. Sayood, "Introduction to Data Compression", Morgan Kaufmann
Publidhers, 2nd edition, 2000.

[28] J. Miano, "Compressed Image File Formats", Addison Wesley Longman,
Inc, 1999.

114

[29] K. R Castleman, "Digital Image Processing", Prentice Hall, Inc, 1996.

[30] M. Ghanbari, "Video Coding: An Introduction to Standard Codecs", IEE
Telecommunication Series 42, 1999.

[31] C.-T. Hsu, J.-L. Wu, “Hidden Digital Watermarks in Images”, IEEE
Transactions on Image Processing, vol.8, no.1, pp. 58-68, January 1999.

[32] K. S. Shanmugan, A. M. Breipohl, "Random Signals: Detection Estimation
and Data Analysis", John Wiley and Sons, Inc, 1988.

[33] R. B Wolfgang, C. I. Podilchuk, E. J. Delp, “Perceptual Watermarks for
Digital Images and Video”, Proceedings of the IEEE, vol.87, no.7, pp. 1108-1126, July
1999.

[34] C. I. Podilchuk, E. J. Delp, "Digital Watermarking: Algorithm and
Applications", IEEE Signal Processing Magazine, pp.33-46, July 2001.

[35] Y.-P. Wang, M.-J. Chen, p.-Y. Cheng, “Robust Image Watermark With
Wavelet Transform and Spread Spectrum Techniques”, Conference Record of the Thirty-
Fourth Asilomar Conference on Signals, Systems and Computers, vol.2 , pp. 1846 –1850,
Asilomar, 2000.

[36] S. B. Wicker, "Error Control Systems for Digital Communication and
Storage", Prentice-Hall Inc, 1995.

[37] I. Retsas, R. Pieper, R. Cristi, “Watermark Recovery with a DCT-based
Scheme Employing Nonuniform Imbedding”, 34th Southeastern Symposium on System
Theory (SSST-02), Alabama, March 18-19, 2002.

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California, 93943-5121

3. Chairman, Department of Electrical and Computer Engineering
Monterey, California, 93943-5121

4. Chairman, Information Warfare Academic Group
Monterey, California, 93943-5121

5. Prof. Ron Pieper
Department of Electrical and Computer Engineering
Monterey, California, 93943-5121

6. Prof. Roberto Cristi
Department of Electrical and Computer Engineering
Monterey, California, 93943-5121

7. Hellenic Navy General Staff
Department B2, Stratopedo Papagou, Mesogeion 151,
Holargos, 15500, Athens
Greece

8. Lt Ioannis Retsas HN

Eirinis 49-51, Ag. Paraskevi
Athens, 15341
Greece

117

	I.INTRODUCTION
	A.PURPOSE
	B.RESEARCH QUESTIONS
	C.THESIS OUTLINE
	D.EXPECTED BENEFITS OF THE THESIS

	II.BACKGROUND ON DIGITAL WATERMARKING
	A.HISTORIC REVIEW
	B.GENERAL CONTEXT OF INFORMATION HIDING
	1.Information Hiding
	Steganography
	3.Covert Channels

	C.WATERMARKING
	1.Watermarking in the Digital World
	Requirements
	Terminology
	Public and Private Watermarking
	Robust and Fragile Watermarks
	Fingerprinting

	D.IMAGE WATERMARKING TECHNIQUES
	1.Space Domain Watermarking
	Transform Domain Watermarking

	III.DCT DOMAIN TECHNIQUES
	A.THE DISCRETE COSINE TRANSFORM
	1.Linear Transforms
	The Discrete Cosine Transform
	One-dimensional DCT
	b.Two-dimensional DCT

	B.THE JOINT PHOTOGRAPHIC EXPERTS GROUP (JPEG) STANDARD
	1.The Transform
	Quantization
	Coding
	a.DC Encoding
	AC Encoding

	IV.A NON-UNIFORM WATERMARKING ALGORITHM
	A.ANALYSIS OF THE NEW CONCEPTS
	1.Center of Interest Proximity Factor
	2.Complexity Factor

	B.ENCODER
	1.Priority Coefficient
	Embedding Algorithm

	C.DECODER AND DECISION MAKING

	V.IMPLEMENTATION ISSUES
	A.KEYING
	B.QUANTIZATION
	C.NORMALIZATION
	F.ERROR CORRECTION CODING

	VI.RESULTS
	A.TESTED IMAGES AND WATERMARKS
	1.Images
	a.Regular (Non-synthetic) Images
	b.Artificial (Synthetic) Images

	2.Watermarks
	a.Watermark Selection

	B.TESTING THE NON-UNIFORM ALGORITHM
	1.Transparency
	2.Watermark Recovery from Marked Image
	3.Performance after Quantization
	4.Robustness to Cropping

	C.SELECTION OF THE WEIGHTING FACTOR

	VII.CONCLUSION
	A.SUMMARY
	B. SIGNIFICANT REMARKS
	C.FUTURE WORK
	D.EPILOGUE

	APPENDIX A.RESULTS OF THE ECC IMPLEMENTATION
	APPENDIX B. SOFTWARE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

